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SUMMARY 

Analogic CNN algorithms are presented for various interpolation and approximation tasks in 3D. They are designed on 
the basis of mechanical analogies. Symmemc space-vanant operations are implemented by the CNN algorithms; with 
switched templates, a key example is object rotation. Direction and speed coding are shown in detail. 

1. INTRODUCTION 

Two types of problems are solved: interpolation and approximation in 3D and object rotation or motion on 
a prescribed route. The efficiency of CNN algorithms'-4 has been shown mainly in cases where the CNN 
templates and/or the tasks are space-invariant. The first part of this paper raises the problem of space 
variance, the second part offers a solution without major modification of the regular structure. The space 
variance of the templates is controlled in a locally prescribed or controlled way as a function of a single 
value at each cell instead of by defining a space-variant template map for the whole network. 

2. 3D INTERPOLATION AND APPROXIMATION 

For solving a lot of problems it is necessary to fit a surface through given points. When points on the object 
are sparsely specified, the surface of the object is calculated on a relatively dense grid. 

The problem can be solved by interpolation and approximation with digital  computer^,^,^ but serial 
execution leads to low speed. If a cellular neural network is applied, it will work in a fully parallel manner. 
Next, two different fitting methods will be described: interpolation and approximation. In the case of 
interpolation the surface fits exactly through the given points. In the case of approximation it fits only 
approximately. 

2.1.  The model 

physical model whereby it was examined how a thin plate behaves under some special  constraint^.^ 
There are innumerable surfaces that fit the given points. One of them must be selected. We have used a 

* Also: Technical University of Budapest, Budapest, Hungary 
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In the case of interpolation these constraints mean that the plate is fixed at known points. In the case of 
approximation the constraints are provided by springs. Springs are placed between the given point and the 
appropriate point of the surface, hence the surface will pass near the given points. It seems rational to 
imitate the thin plate by a cellular neural network. 

Using a cellular neural network, the potential energy of the plate will be determined. At equilibrium the 
potential energy of a mechanical system is minimal, so the shape of the thin plate is easily determined. 
That surface is found which has the minimum potential energy and is consistent with the constraints. 

Describing the surface by a function z = v(x,  y). Courant and Hilbert’ give the potential energy as 

The functional is composed of five terms. The first term gives the strain energy within the interior of the 
plate. The combining factor u is called the Poisson constant. It accounts for the change in width as the plate 
material is stretched lengthwise. The second term is the result of the effect of gravity. The next two terms 
quantify energies imparted around the edges of the plate. The quantity p(s)  is the externally applied force 
at the boundary, m(s )  is the bending moment at the boundary, R is the surface of the plate, dR is the 
boundary of the plate, s denotes the arc length along the boundary and v, denotes the directional derivative 
of v along the outward normal to the boundary. The last term is the energy of the springs, where w is the 
stiffness of the springs and x,, y,, z ,  are the three co-ordinates of the ith given point. 

In case of approximation there are no external forces applied and the effect of gravity need not be 
considered; if CJ is zero, the formula can be expressed as 

The factor is missing because it does not affect the function v ( x ,  y) belonging to the minimal energy. In 
the case of interpolation, springs are not used and the expression becomes 

2.2. Discretization 

The surface is given as a function z = v ( x ,  y) .  Discretization is necessary to handle this surface with a 
digital computer or a cellular neural network. Grid values v ( i j )  will be utilized instead of z = v(x, y ) ,  where 
v ( ; , ~ )  is the altitude of the surface at grid point ( i , j ) .  If an m x m grid is used, then m x m v,,,,,-values must 
be specified. They can be placed in a vector v. 

To discretize the energy function, the differential terms will be approximated by difference terms: 

2 1 

h 
u . t j ( i , ~  = 7 ( ~ ( i j )  - v(i+l,,) - u(tj+ 1) + v(i+ I . j + l ) )  + ~ ( h ’ )  

The integrals are also approximated by sums. Afterwards the following discretized energy function6 is 
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written for the approximation (assuming that h is unity): 

In the case of interpolation the last term in this expression is omitted. 

2.3, Finding the minimum using a gradient method 

can be used: 
A vector v where E(v) is minimal must be found. Using a gradient method, the following iteration rule 

vk+ = vk - B grad E(v) I v k ,  lim vk = vmin (6) 
k - - f m  

For the cellular neural network approach a modified formula is used. The settled state of the next equation 
finds the vector v that belongs to the minimal energy: 

dv - = -/? grad E(v) 
dt 

(7) 

From (5 )  the energy function can be expressed as the sum of products of two grid elements and a constant: 

A co-ordinate of the gradient is the sum of products of a grid element and a constant: 
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In Table I the matrix A of cells in positions ( i , j )  can be seen. The letters a-f denote the matrices in 
l l(a)-l l(f)  respectively; x , y  and t denote reflection around co-ordinate axes x and y and matrix 
transposition respectively. 

For example at position (0, m - 2), drx can be found. The letter d indicates that the A-template of the cell 
is the matrix d. The letter t indicates that it must be transposed: 

0 0  0 

0 0 -19 12 -2 
0 0 12 -4 0 
0 0 - 2 0 0  

At the end the letter x denotes reflection around the x-axis. The result is 

The interpolating network is used in the following way. Some points of the 3D shape are given with 
three co-ordinates i ,  j ,  z. Co-ordinates i and j are the discretized co-ordinates x and y. The co-ordinate z is 
real. If the co-ordinates of a given point are i, j ,  z, then it means that the altitude of the surface at a grid 
point ( i , j )  is known. This altitude is z. 

Before starting the network transient, the states of cells must be filled in. The matrix B is zero, so the 
input of the network is not used, If at a position ( i , j )  the altitude z of the surface is known, this altitude is 
filled into the state and it is kept fixed after starting the transient. If at a position ( i , j )  the altitude of the 
surface is not known, then a zero is filled into the state and a change in state is allowed. 

Table I. Space-variant feedback templates ( A )  of cells depending on position 

i i = O  1 2 3 4 m - 3  m - 2  m-1 

1 dt 
d C C c C dY fY 
e b b b b eY dry 

0 f 
2 C t  bt a a a a bty cry 
3 C t  bt a a a a bty cry 
4 ct bt a U a a bry cry 

rn- 3 ct br a a a a bry cry 
in - 2 drx ex bx bx bx bx exy dtxr 
m - 1 fx dr cx cx cx cx dxY f x y  
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Next the network will be started. In the settled state the output of the network gives the fitted surface. 
Suppose that a cellular neural network of 5 x 5 cells is used. Three points of the 25 are specified with 

altitudes 3,  1 and 3. Before the start the following states are filled in: 

j i=O 1 2 3 4 
0 0 0 3 0 0  
1 0 0 0 0 0  
2 1 0 0 0 0  
3 0 0 0 0 0  
4 0 0 3 0 0  

At the specified points the states are kept fixed. In the settled state the output is 

i i = 0  1 2 3 4 
~ 

0 1 2 3 4 5  
1 1 2 3 4 5  
2 1 2 3 4 5  
3 1 2 3 4 5  
4 1 2 3 4 5  

The network fits a flat surface through the three given points. (The equation of the flat surface is z = j  + 1.) 

2.4.  The approximating network 

The interpolating network fits the surface exactly through the given points. If there is only one wrong 
point among the given points, it will deform the whole shape. This problem can be eliminated by 
approximation. In this case the surface fits only approximately through the given points. The surface is 
expected to be smooth and fit well through the given points. A weight factor w determines the relative 
importance of the two requirements. If w is large, then the surface will fit almost exactly through the given 
points, so the network gives a result similar to interpolation. If w is small, then smoothness is more 
important than fitting, so the surface will not fit exactly through the given points but will be smooth. 

The templates can now be determined. The network is close to the interpolating network. The differences 
are the following. 

1. At cells ( i , j )  that belong to specified points, the central element of the matrix A is smaller than 
before and the current I is not zero: 

a ~ ~ p 3 ; 0 ~  = aint (3,3) - 2w Iappmx = 2wzi 

2. No cell states are kept fixed. 

2.5. Examples 

The first example shows that the interpolating network fits the surface through three given points. Figure 
1 (a) shows the initial state. There are only three specified points, hence the network should fill the large 
unknown area. Figures 1 (b) and 1 (c) show the states after lOOt and 175502 respectively (where 7 is the 
time constant of the cell). The fitted surface is a flat surface. The reason for the long convergence time is 
that only a few points were given. This is not a practical example, but the correct operation of the algorithm 
is demonstrated. 

The second example is a ball surface reconstruction. Only 10 per cent of the points are known in 
advance. Figure 2(a) shows the initial state. Figures 2(b) and 2(c) show the outputs of the network after 
0.757 and 30 t  respectively. In this case the density of specified points was identical on the whole area and 
it was higher than before. 



414 L. NEMES ETAL. 

( c )  

Figure 1 .  Fitting a surface through three given points: (a) initial state; (b) state after 1 0 0 ~ ;  ( c )  state after 1 7 5 5 0 ~  



3D INTERPOLATION-APPROXIMATION AND OBJECT ROTATION 415 

Figure 2. Ball surface reconstruction in case of 10 per cent specified point density: (a) initial state; (b) state after 0 . 7 5 ~ ;  (c) state 
after 30t 
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The last example shows the approximation of a wedding cuke shape. The specified point density was 30 
per cent. Two results are shown. In Figure 3 (b) the weight factor w was too low. The fitted surface does not 
fit enough through the given points. Figure 3(a) shows a much better approximation. 

2.6. Dependence of settling time on sparsity 

In practical applications the settling time is one of the most important parameters. It depends on the 
positions and quantity of specified points, first of all the density of them. In our example with three points 
the convergence time was 17550t, in the ball shape example with 30 per cent specified point density it was 
only 307. 

Next an error function is constructed characterizing the distance between the actual and the settled state. 
In the error functions the following quantities are used v(,,,), the altitude at grid point ( L j ) ;  v,  a vector 
containing the v(,J,-values of the rn x rn grid; w ( , ~ ) ,  the altitude at grid point ( i , j )  in the settled state; w, a 
vector containing the w(,,)-values of the rn x rn grid. Two error measures will be used: (i) the maximum 

(b) 

Figure 3. Wedding cake shape reconstruction: Results for weight factor (a) 5 and (b) 0.5 
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Next M and L will be examined experimentally in the case of ball surface reconstruction with 10 per 
cent specified point density. The results are shown in Figures 4(a) and 4(b) respectively. 

Let us define the settling times in measures M and L as TIM and TL respectively. TM and TL are the times 
when M and L decrease to 0.05, and 0.25 respectively. (The surface is about one unit high, so M = 0.05 
means 5 per cent maximum error.) The concrete values are not relevant, they were determined to get a 
practically proper state after T,,, and TL and to show a qualitatively characteristic graph. In Figure 5 
experimental values are shown. 

If there are areas with different densities, the situation is more complex. Suppose that on one half of the 
ball 30 per cent of the points are known and on the other half only 10 per cent. In Figures 6(a) and 6(b) the 
settling process for the maximum measure ( M )  and the length measure ( L )  respectively can be seen. In the 
case of mixed 10 per cent/30 per cent specified point density the convergence was faster than in the case 
of 10 per cent uniform density but slower than in the case of 30 per cent uniform density. 

L 
10 ii \ 

0 6 10 15 20 25- 
tlT 

(b) 

Figure 4. Ball surface reconstruction in case of 10 per cent specified point density: curves of error functions (a) M and (b) L 
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Figure. 5. Ball surface reconstruction with different specified point densities: curves of settling times T, and TL 
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Figure 6. Ball surface reconstruction in case of 20 percent and mixed 10 percent/30 per cent specified point density: curves of error 
functions (a) M and (b) L 
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2.7. Conclusion 

Two surface-fitting methods were realized using CNNs: interpolation and approximation. The networks 
presented here have only one layer and a simple structure. Omitting parallel processing the new algorithms 
can achieve higher speed than digital computers that solve this problem using grid methods with serial 
execution. 

The most significant application is surface reconstruction. In many cases, e.g. in 3D shape 
reconstruction, the characteristic points of an object are known and the surface of the object is requested. 
The algorithm fits a surface through these characteristic points that is as smooth as possible. 

3. SYMMETRIC SPACE-VARIANT OPERATIONS WITH CNNS-AN EXAMPLE: OBJECT 
ROTATION 

3.1. Introduction 

Space-variant CNN templates in general cause implementation problems. Fortunately, most of the 
‘useful’ space-variant transformations have their own symmetry. Our intent is to implement some space- 
variant operations on a CNN without losing the benefits of fast programmability and without major 
modification of the regular space-invariant structure by exploiting their symmetry properties. More exactly, 
we try to implement operations whose space invariance can be encoded locally cell-by-cell by a singlt: value 
only. In this paper a new method for space-variant processing of binary images is presented. 

3.2. Exumple: rotation 

Rotation is a useful space-variant operation (e.g. in pattern recognition tasks, when the pattern to be 
recognized is rotated) which possesses the required symmetry properties. The CNN structure used for the 
task consists of two layers: one contains the encoded space-variant information, in the present case the 
circular pathway, and is called the control layer; the second carries the actual object to be rotated and is 
called the reference layer. Local analogue arithmetic is used for calculating the inputs of the decoding 
function whose output provides the elements of a space-variant template applied to the reference layer in 
each position (Figure 7). 

Figure 7. Two-layer CNN structure for space-variant operations 
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Let us consider the following discrete-time state equation describing the behaviour of the presented 
structure (C = 1 ,  R = 1): 

Grk./ , /  = f (uyi , ,con - uy/,~,con) 

where b ,  are the elements of the linear control template and (Z l j , k l  arc the elements of the space-variant non- 
linear feedback template. In the present example the space variance is encoded locally as the difference in 
the neighbouring pixel values, which is the argument of f 

L e t  us consider a single black pixel object 
somewhere off centre position on the image. Our purpose is to move the black value on a circular pathway 

3.2.1. Moving single bluckpixel object on circular puthwuy. 

Figure 8. The space variant information needed for rotation can be locally encoded in a so called control image. The black pixel in 
any position on the circular pathway can only move in one direction of the possible nine and this as well as  the speed information can 

be included in a 3 x 3 window 

1 .._....__.... . .. ....... ., 

(3) (1)) 

Figure 9. Control image and its 3D representation for moving a single black pixel object on a circular pathway. Details of the blank 
window are shown in Figure 10 
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around the centre. The direction and speed of movement depend on the pixel position with respect to the 
centre. This information can be encoded in a 3 x 3 window; in other words, the rotation can be coded 
locally (Figure 8). The direction coding needed for moving a black pixel on a circular pathway can be 
included in a circular step function as shown in Figure 9. 

The step size of this function is a well-determined value 6. Therefore in the window in Figure 8 the 
differences in pixel values with respect to the central element are 6 in the direction of movement, -6 in the 
opposite direction and significantly different (abs (difference) 9 6) in all other directions (prohibited directions). 

In order to understand how the direction information can be gained from the control image and realized 
as space-variant templates, let us consider the well-known CCD template. It contains only three values 
different from 0: the central 2, - 1 in the direction of movement and 1 in the opposite direction. Normally it 
moves black points on a straight path, but if we could relocate the -1 and 1 values depending on the 
position, we could make it space-vanant. This can be achieved using the control image described above and 
a simple non-linear decoding function (Figure 11). 

The possible differences in the given neighbourhood and the corresponding outputs of the decoding 
function are 

Figure 10 A slice of the circular pathway in the position of the blank window on Figure 9 

- -'I 
Figure 11 The non-linear function which assigns the necessary template values to the difference in control picture pixel values 
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Figure 12 shows how the decoding function assigns proper values to the CCD template element in each 
position according to the differences between the pixel values on the control image within the 3 x 3 window. 

3.2.2. Introducing speed adjustment. Expressing the pixel co-ordinates in polar co-ordinates with the 
centre of rotation as the origin, the direction of movement depends on the angular variable while the speed 
depends on the distance from the centre. This latter property can also be expressed by applying a somewhat 
more complicated non-linear template function and multiple step-functions in which the speed is encoded 
in the step size. Figure 13 shows the decoding function in the case of two points with different radial 
distances. The relevant control image can be seen in Figure 14. 

Another example can be seen in Figure 15 for moving objects of any size on the image within the 
outermost path with no speed adjustment. 

I 

I > 
6 26 vy i jcon-  

.. -1.00 
- -  -1.25 

Figure 12. Position-dependent values of CCD template values are calculated as the output of a non-linear decoding function. In 
positions where in a 3 x 3 window on the pathway the differences in the neighbouring pixel values are 6 and -B,  the substituted 
values are 1 and - I  respectively; in all other directions in which the differences are significantly different, 0s are substituted in 

templates applied to the corresponding positions on the reference image 

T' 
" yklcon 

Figure 13. Encoding the radial distance in the non-linear function which substitutes the properly weighted values in the space-variant 
template for moving two pixels of different distances from the centre on the circular pathway with the same angular velocity 
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Figure 14. Control irnage and its 3D representation for nioving two pixels parallelly with speed adjuntnicnt 

Figure 15. Conlrol irriage and its 3D representation for moving full-screen objects 

3.3. Generalization 

The arrangement used for object rotation can be generalized. In this way we can implenient several other 
space-variant operations which can be locally encoded (e.g. diminishment, enlargement). 

Note that the space variant template can in general be in either feedback or feedforward position and that 
the carrier of the space-variant information can be either the input or the output of any layer in a multilayer 
CNN structure, which enables u s  to implement recursive processes. The space variance can also be encoded 
in various ways. The generalized form of (1 8) is 

We can define numerous basic operations denoted by @ in equation (20) between the pixels of the 
control layer within the given neighbourhood. These can be any simple, locally realizable operation such as 
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subtraction (used in this example), addition, multiplication etc. Increasing the neighbourhood is another 
way to enlarge the code space. 

3.4. Practical limitations 

In more complicated tasks with higher resolution the space-variant information to be encoded gets more 
and more complex. With the current analogue VLSI technology the accuracy of CNN computations cannot 
exceed 7-8 bits (a couple of tenths of a per cent). This means that in the given neighbourhood the distance 
of codes cannot be smaller than these limits, which reduces the number of choices of different codes. With 
a wider neighbourhood, using more operations between the pixel values can increase the number of 
variations, although the design of the control image and the optimization in the code space become more 
and more difficult. On the other hand, the lack of accuracy in the realization of the non-linear function may 
cause severe distortions in space-vanant operation. 

3.5. Conclusion 

Our purpose is to exploit the CNN’s high computing speed provided by the analogue dynamics. This 
means that in a compound task we try to solve the biggest part of the problem possible with the CNN 
without unnecessary data transfers between parallel and serial architectures. However, there can be subtasks 
such as space-variant operations which may cause implementation problems with the regular space- 
invariant CNN structure. 

As a space-variant operation, rotation has been achieved using two space-invariant CNN layers, one of 
which is used as a local space-variant control of the template values. This method can be further 
generalized. 

Our method for designing control images is rather heuristic at this stage of research, though in some 
special cases straightforward computing methods seem possible. There are further exploitable possibilities 
in the recursive algorithms when we modify the control image during the process. The behaviour of these 
algorithms, however, is extremely sophisticated and needs further examination. 
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