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What is the relation between spin squeezing and entanglement? To clarify this, we derive the full set of
generalized-spin-squeezing inequalities for the detection of entanglement. These are inequalities for the mean
values and variances of the collective angular-momentum components Jk. They can be used for the experi-
mental detection of entanglement in a system of spin-1

2 particles in which the spins cannot be individually
addressed. We present various sets of inequalities that can detect all entangled states that can be detected based
on the knowledge of �i� the mean values and variances of Jk in three orthogonal directions, or �ii� the variances
of Jk in three orthogonal directions, or �iii� the mean values of Jk

2 in three orthogonal directions, or �iv� the
mean values and variances of Jk in arbitrary directions. We compare our inequalities to known spin-squeezing
entanglement criteria and discuss to which extent spin squeezing is related to entanglement in the reduced
two-qubit states. Finally, we apply our criteria for the detection of entanglement in spin models, showing that
they can be used to detect bound entanglement in these systems.
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I. INTRODUCTION

Entanglement lies at the heart of many problems in quan-
tum mechanics and has attracted an increasing attention in
recent years �1,2�. Entanglement is needed in several quan-
tum information processing tasks such as teleportation and
certain quantum cryptographic protocols. It also plays an im-
portant role in quantum computing making it possible that
quantum computers can outperform their classical counter-
parts for several problems such as prime factoring or search-
ing. Moreover, entangled states and the creation of quantum
entanglement naturally arise as goals in nowadays quantum
control experiments when studying the nonclassical phenom-
ena in quantum mechanics.

When in an experiment entanglement is created, it is im-
portant to detect it. Thus, in many quantum physics experi-
ments the creation of an entangled state is followed by mea-
surements. Based on the results of these measurements, the
experimenters conclude that the produced state was en-
tangled. However, in many-particle experiments the possi-
bilities for quantum control are very limited. In particular,
the particles cannot be individually addressed. In such sys-
tems, the entanglement can be created and detected with col-
lective operations.

Spin squeezing is one of the most successful approaches
for creating quantum entanglement in such systems �3–17�.
Reference �3� defined spin squeezing in analogy with
squeezing in quantum optics. Let us consider an ensemble of

N spin-1
2 particles and define the observables for the collec-

tive angular momentum as

Jl ª
1

2�
k=1

N

�l
�k� �1�

for l=x ,y ,z and where �l
�k� are Pauli matrices. Then, the

variances of the angular-momentum components are
bounded by the following uncertainty relation:

��Jz�2��Jy�2 �
1

4
��Jx��2. �2�

If ��Jz�2
ª �Jz

2�− �Jz�2 is smaller than the standard quantum
limit 1

2 ��Jx�� then the state is called spin squeezed �18�. In
practice, this means that the mean angular momentum of the
state is large, and in a direction orthogonal to it the angular-
momentum variance is small. An alternative and slightly dif-
ferent definition of spin squeezing considered the usefulness
of spin-squeezed states for reducing spectroscopic noise or to
improve the accuracy of atomic clocks �4,19�.

It has already been noted in Ref. �3� that the occurrence of
spin squeezing is connected to the correlations between the
spins. In fact, as shown in Ref. �8�, there is an entanglement
criterion for the detection of the entanglement of spin-
squeezed states. If an N-qubit state violates the inequality

��Jz�2

�Jx�2 + �Jy�2 �
1

N
, �3�

then the state is entangled �not separable�; that is, it cannot
be written as �20�
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� = �
k

pk�k
�1�

� �k
�2�

� . . . � �k
�N�, �4�

where the pk forms a probability distribution.
After this first entanglement criterion, several

generalized-spin-squeezing criteria for the detection of en-
tanglement appeared in the literature �21–23� and have been
used experimentally �24,25�. In Ref. �22�, a generalized-spin-
squeezing inequality was presented that detects entanglement
close to many-body spin singlets such as, for example, the
ground state of an antiferromagnetic Heisenberg chain. In
Ref. �21�, a generalized-spin-squeezing criterion was pre-
sented detecting the presence of two-qubit entanglement. For
symmetric systems, these criteria are necessary and suffi-
cient. In Ref. �23�, other criteria can be found that detect
entanglement close to symmetric Dicke states. All these en-
tanglement conditions were obtained using very different ap-
proaches. Therefore, one may ask: is there a systematic way
of finding all such inequalities? Clearly, finding such optimal
entanglement conditions is a hard task since one can expect
that they contain complicated nonlinearities.

In Ref. �26�, we have presented a set of spin-squeezing
inequalities for the detection of entanglement. We showed
that these inequalities are complete, in the sense that they can
detect all entangled states that can be detected by the knowl-
edge of �Jl� and ��Jl�2 for three orthogonal directions l
=x ,y ,z. This completeness means the following. A state that
is not detected by the inequalities cannot be distinguished
from a separable state by knowing �Jl� and ��Jl�2 only.

In this paper, we present extensions of this approach in
several directions. In Sec. II, we first present a detailed deri-
vation of the optimal spin-squeezing inequalities from Ref.
�26�. Then, we consider the case when only the variances
��Jl�2 �and not the mean values �Jl�� are known or when
only the mean values �Jl

2� are known. We derive the optimal
spin-squeezing inequalities also for this case. In Sec. III, we
consider the case when �Jl� and ��Jl�2 are known not only in
three orthogonal directions but also in arbitrary directions. In
this case, we can reformulate the spin-squeezing inequalities
as inequalities for correlation and covariance matrices. In
Sec. IV, we compare our optimal spin-squeezing inequalities
to other known entanglement criteria. In Sec. V, we discuss
the issue of detecting entanglement of the multiqubit quan-
tum state vs detecting entanglement in the reduced two-qubit
density matrix. Finally, in Sec. VI we apply our inequalities
to the investigation of spin models. We have shown already
in Ref. �26� that the spin-squeezing inequalities can detect
bound entanglement �a weak form of entanglement, which is
at the heart of many fundamental problems in entanglement
theory� in such models. Here, we present more examples for
the applicability of the spin-squeezing inequalities.

II. OPTIMAL SPIN-SQUEEZING INEQUALITIES

Our aim is to characterize the separable states in terms of
the values of �Jl� and ��Jl�2. Note that the knowledge of �Jl�
and ��Jl�2 is equivalent to the knowledge of �Jl� and �Jl

2�. We
now present our main result from Ref. �26�:

Observation 1. Let us assume that for a physical system
the values of

J� ª ��Jx�,�Jy�,�Jz�� �5�

and

K� ª ��Jx
2�,�Jy

2�,�Jz
2�� �6�

are known. For separable states all the following inequalities
are fulfilled:

�Jx
2� + �Jy

2� + �Jz
2� �

N�N+2�
4 , �7a�

��Jx�2 + ��Jy�2 + ��Jz�2 �
N
2 , �7b�

�Jk
2� + �Jl

2� − N
2 � �N − 1���Jm�2, �7c�

�N − 1����Jk�2 + ��Jl�2� � �Jm
2 � +

N�N−2�
4 , �7d�

where k , l , m take all the possible permutations of
x , y , z. While Eq. �7a� is valid for all quantum states, the
violation of any of Eqs. �7b�–�7d� implies entanglement.

Proof. The variance defined as ��A�2
ª �A2�− �A�2 is con-

cave in the state that is, if �= p�1+ �1− p��2, then ��A��
2

� p��A��1

2 + �1− p���A��2

2 . Thus, it suffices to prove that the
inequalities of observation 1 are satisfied by pure product
states. Based on the theory of angular momentum, inequality
�7a� is valid for all quantum states and the equality holds for
states of the symmetric subspace. However, for separable
states, it can be proved easily without this knowledge using
that for such states �27�

��x
�i��x

�j�� + ��y
�i��y

�j�� + ��z
�i��z

�j�� � 1. �8�

For Eq. �7b� one first needs that for product states

��Jk�2 =
N

4
−

1

4�
i

��k
�i��2 �9�

holds. Then, for a product state one has

��Jx�2 + ��Jy�2 + ��Jz�2 =
3N

4
−

1

4�
k

xk
2 + yk

2 + zk
2. �10�

Here xiª ��x
�i��, yiª ��y

�i��, and ziª ��z
�i��. Knowing that xi

2

+yi
2+zi

2�1, the right-hand side of Eq. �10� is bounded from
below by N

2 .
Concerning Eq. �7c�, we have to show that

Y ª �N − 1���Jx�2 + N
2 − �Jy

2� − �Jz
2� � 0. �11�

This can be written as

Y = �N − 1�	N

4
−

1

4�
i

xi
2
 −

1

4�
i�j

�yiyj + zizj�

= �N − 1�	N

4
−

1

4�
i

xi
2
 −

1

4	��i

yi�2
+ ��

i

zi�2

+

1

4�
i

�yi
2 + zi

2� . �12�

Using
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��
i

si�2
� N�

i

si
2, �13�

and the normalization of the Bloch vector, it follows that

Y �
N − 1

4 �
i

�1 − xi
2 − yi

2 − zi
2� � 0. �14�

Equation �7d� can be proved in a similar way. We have to
show that

Z ª �N − 1����Jk�2 + ��Jl�2� − �Jm
2 � −

N�N−2�
4 � 0. �15�

This can be proved by rewriting Z with the individual spin
coordinates and using Eq. �13�,

Z = �N − 1�	N

4
−

1

4�
i

xi
2 + yi

2
 −
1

4�
i�j

zizj

�
N − 1

4 �
i

�1 − xi
2 − yi

2 − zi
2� � 0. �16�

�

For any value of J� the eight inequalities in Eq. �7� define
a polytope in the three-dimensional ��Jx

2� , �Jy
2� , �Jz

2�� space.
Observation 1 states that separable states lie inside this poly-
tope. The polytope is depicted in Figs. 1�a� and 1�b� for

different values for J�. It is completely characterized by its
extremal points. Direct calculation shows that the coordi-
nates of the extreme points in the ��Jx

2� , �Jy
2� , �Jz

2�� space are

Ax ª 	N2

4
− ���Jy�2 + �Jz�2�,

N

4
+ ��Jy�2,

N

4
+ ��Jz�2
 ,

Bx ª 	�Jx�2 +
�Jy�2 + �Jz�2

N
,
N

4
+ ��Jy�2,

N

4
+ ��Jz�2
 ,

where �ª �N−1� /N. The points Ay/z and By/z can be obtained
in an analogous way. Note that the coordinates of the points
Ak and Bk depend nonlinearly on �Jk�.

One might ask whether all points inside the polytope cor-
respond to separable states. This would imply that the criteria
of observation 1 are complete; that is, if the inequalities are
satisfied then the first and second moments of Jk do not suf-
fice to prove entanglement. In other words, it is not possible
to find criteria detecting more entangled states based on these
moments. Due to the convexity of the set of separable states,
it is enough to investigate the extremal points.

Observation 2. �i� For any value of J�, there are separable
states corresponding to Ak. �ii� If we define JªN /2,

cx ª
1 − ��Jy�2 + �Jz�2�/J2 �17�

and pª �1+ �Jx� / �Jcx�� /2 and if then Np is an integer then
there is also a separable state corresponding to Bx. Similar
statements hold for By and Bz. Note that this condition is

always fulfilled, if J� =0� and N is even.
�iii� There are always separable states corresponding to

points Bk� such that their distance from Bk is smaller than 1
4 .

In the limit N→� for a fixed normalized angular momentum

j�ªJ� / �N /2�, the difference between the volume of polytope
of Eq. �7� and the volume of set of points corresponding to
separable states decreases with N at least as �V /V	N−2;
hence in the macroscopic limit the characterization is com-
plete.

Proof. A separable state corresponding to Ax is

�Ax
ª p��
+��
+���N + �1 − p���
−��
−���N. �18�

Here �
+/−� are the single qubit states with Bloch vector co-
ordinates ���x� , ��y� , ��z��= ��cx , �Jy� /J , �Jz� /J�. If MªNp
is an integer, we can also define the state corresponding to
the point Bx as

��Bx
� ª �
+��M

� �
−���N−M�. �19�

Since there is a separable state for each extreme point of the
polytope, for any internal point a corresponding separable
state can be obtained by mixing the states corresponding to
the extreme points. It is instructive to demonstrate this
through a simple numerical experiment. Figure 2 shows that

for N=10 and J� =0� , random separable states indeed fill the
polytope.

If M is not an integer, we can approximate Bx by taking
mªM − as the largest integer smaller than M, defining

�� ª �1 − ���
+��
+���m
� ��
−��
−����N−m�

+ ��
+��
+����m+1�
� ��
−��
−����N−m−1�. �20�

This state has the same coordinates as Bx, except for the
value of �Jx

2�, where the difference is cx
2�−2��1 /4. The
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FIG. 1. �Color online� �a� The polytope of separable states cor-

responding to Eq. �7� for N=10 and for J� =0� . The origin of the
coordinate system corresponds to a many-body singlet state. �b� The

same polytope for J� = �0,0 ,4�. Note that this polytope is a subset of
the polytope in �a�.
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dependence of �V /V on N can be studied by considering the
polytopes in the ��Jx

2� , �Jy
2� , �Jz

2�� space corresponding to
�Jk�= jk

N
2 , where jk are the normalized angular-momentum

coordinates. As N increases, the distance of the points Ak to
Bk scales as N2, hence the volume of the polytope increases
as N6. The difference between the polytope and the points
corresponding to separable states scales like the surface of
the polytope, hence as N4. �

Let us analyze now our optimal spin-squeezing inequali-
ties one by one and define the corresponding facets of the
polytope on Fig. 1�a�. Equation �7a� corresponds to the facet
Ax-Ay-Az. As we discussed, it is valid for all quantum states.
The symmetric states correspond to states on this facet and
saturate Eq. �7a�.

Equation �7b� has already been presented in Ref. �22�. It
corresponds to the facet Bx-By-Bz. For even N, it is maxi-
mally violated by many-body singlets. For such states

J� ª �0,0,0� ,

K� ª �0,0,0� . �21�

That is, singlet states are states for which both the angular-
momentum components and their variances are zero �28�.
For large enough N, there are many states of this type. If we
mix these states, the mixture still maximally violates this
inequality and thus it is detected as entangled. This might be
the reason that this criterion can detect states that are very
weakly entangled in the sense that they are separable with
respect to all bipartitions.

The violation of the criterion gives information about the
number of spins that are unentangled with the rest in the
following sense �27�. Let us consider a pure state for which
the first M qubits are not entangled with other qubits, while
the rest of the qubits are entangled with each other

��� = ��k=1
M �
k�� � �
�M+1,. . .,N. �22�

For such a state, based on the theory of entanglement detec-
tion with uncertainties, we have �29�

��Jx�2 + ��Jy�2 + ��Jz�2 �
M
2 . �23�

Let us consider now a mixed state �ª�kpk��k���k�. If it
violates Eq. �23� then at least one of the components

��k���k� must have M or more spins that are entangled with
other spins. If the left-hand side of Eq. �23� is smaller than 1

2
then the state cannot be created by mixing states that have
one or more unentangled spins.

Equation �7c� corresponds to the facets Ay-Az-Bx,
Ax-Az-By, and Ax-Ay-Bz. All entangled symmetric Dicke
states violate this criterion �30�. This can be seen as follows.
An N-qubit symmetric Dicke state with m excitations is de-
fined as �31�

�m,N� ª �N

m
�−1/2

�
k

Pk��11,12, . . . ,1m,0m+1, . . . ,0N�� ,

�24�

where �Pk� is the set of all distinct permutations of the spins.
�1,N� is the well-known N-qubit W state. For states of the
form �24�

J� = �0,0,m − N
2 � ,

K� = „N
4 +

m�N−m�
2 , N

4 +
m�N−m�

2 ,�m − N
2 �2

… . �25�

Using Eq. �25� one finds that Eq. �7c� is violated by all Dicke
states expect for the nonentangled ones with m=0 and m
=N. For even N, it is maximally violated by the symmetric
Dicke state � N

2 ,N�
Finally, Eq. �7d� corresponds to the facets Ay-Bz-Bx,

Ax-Bz-By, and Az-Bx-By. Note that these inequalities detect
the singlet state with Eq. �21� as entangled.

Now we can ask the question, what happens if we only

know K� from Eq. �6� and not J� from Eq. �5�. Can we con-
struct a polytope of the separable states similar to observa-
tion 1? Similarly, we can consider the case that we know the

variances ���Jx�2 , ��Jy�2 , ��Jz�2� but not J�. The following
observation gives the answer.

Observation 3. �i� Let us consider the set of points corre-
sponding to separable states for even N in the

��Jx
2� , �Jy

2� , �Jz
2�� space without constraining the value of J�.

This set is the polytope from observation 1 for J� =0� , also
shown in Fig. 1�a�. �ii� Also, the set of points corresponding
to separable states in the ���Jx�2 , ��Jy�2 , ��Jz�2� space is the
same polytope. That is, Fig. 1�a� gives also the right polytope
if the labels of the axes are changed from �Jl

2� to ��Jl�2.
Proof. For the first part, it can be directly seen that Eq. �7�

is least restrictive for J� =0� , for other J� the polytope is strictly
smaller. For the second part, note that based on Eq. �7� the
points corresponding to separable states must be within the
same polytope shown in Fig. 1�a�, even if we change the
labels from �Jl

2� to ��Jl�2. It is not clear, however, that the set
of separable states is convex in the ���Jx�2 , ��Jy�2 , ��Jz�2�
space. Thus, we have to show that for each separable state �
with �Jl

2�=Sl for l=x ,y ,z, there is a separable state �̃ for
which ��Jl�2=Sl. Let us use the decomposition �=�pk�k

where �k=�k
�1�

� �k
�2�

� . . . � �k
�N� are product states. Then,

such a �̃ª�pk�̃k can be obtained by mixing
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FIG. 2. �Color online� The polytope of separable states corre-

sponding to Eq. �7� for N=10 and for J� =0� . The points correspond-
ing to random separable states fill the polytope.
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�̃k ª
1
4 ��k + Jx�kJx + Jy�kJy + Jz�kJz� . �26�

The state �̃ has the same �Jl
2� as �. However, the value of

�Jl�2 is zero, hence ��Jl��̃
2= �Jl

2��. �

III. OPTIMAL SPIN-SQUEEZING INEQUALITIES FOR
THE CORRELATION MATRIX

We discuss some further features of our spin-squeezing
inequalities. One can ask what happens if not only �Jk� and
�Jk

2� for k=x ,y ,z are known but �Ji� and �Ji
2� in arbitrary

directions i. We will now first show how to find the optimal
directions x� ,y� ,z� to evaluate observation 1.

Knowledge of �Ji� and �Ji
2� in arbitrary directions is

equivalent to the knowledge of the vector J�, the correlation
matrix C, and the covariance matrix � defined as �32–34�

Ckl ª
1
2 �JkJl + JlJk� ,

�kl ª Ckl − �Jk��Jl� , �27�

for k , l=x ,y ,z. When changing the coordinate system to

x� , y� , z� vector J� and the matrices C and � transform as

J� �OJ�, C�OCOT, and ��O�OT where O is an orthogo-
nal 3�3 matrix. Looking at the inequalities of observation 1,
one finds that the first two inequalities are invariant under a
change in the coordinate system. Concerning Eq. �7c�, we
can reformulate it as

�Ji
2� + �Jj

2� + �Jk
2� − N

2 � �N − 1���Jk�2 + �Jk
2� . �28�

Then, the left-hand side is again invariant under rotations,
and we find a violation of Eq. �7c� in some direction if the
minimal eigenvalue of

X ª �N − 1�� + C �29�

is smaller than Tr�C�− N
2 . Similarly, we find a violation of

Eq. �7d� if the largest eigenvalue of X exceeds �N−1�Tr���
−N�N−2� /4. Thus, the orthogonal transformation that diago-
nalizes X delivers the optimal measurement directions
x� ,y� ,z� �35�.

Observation 4. We can rewrite our condition �7� in a form
that is independent from the choice of the coordinate system
as

Tr�C� �
N�N+2�

4 , �30a�

Tr��� �
N
2 , �30b�

�min�X� � Tr�C� − N
2 , �30c�

�max�X� � �N − 1�Tr��� −
N�N−2�

4 , �30d�

where �min�A� and �max�A� are the smallest and largest eigen-
values of matrix A, respectively. If Eq. �7� is violated by a
quantum state for any choice of coordinate axes x ,y and z
then Eq. �30� are also violated.

The preceding observation shows how the optimal direc-
tions x , y , z can be chosen by diagonalizing the matrix X.

However, if one diagonalizes X and does not find a violation

of Eq. �30�, this does not a priori imply that C , � and J� are
compatible with a separable state. The knowledge that for the
diagonal X the off-diagonal entries vanish gives some addi-
tional information about the state, which may in principle be
used as a signature for entanglement. We will prove now,
however, that this is not the case and that diagonalizing X

and applying Eq. �30� are the best that one can do if C , �

and J� are known.
Note first that Eq. �30� contains the following variables:

the three eigenvalues of X, Tr�C�, and Tr���. The latter two

can be expressed with the trace of X and J� as

Tr�C� = 1
NTr�X� + N−1

N �J��2,

Tr��� = 1
NTr�X� − 1

N �J��2. �31�

In this way, Eq. �30� can be rewritten with the eigenvalues of

X and �J��2 as

Tr�X� �
N2�N+2�

4 − �N − 1��J��2, �32a�

Tr�X� �
N2

2 + �J��2, �32b�

�min�X� �
1
NTr�X� + N−1

N �J��2 − N
2 , �32c�

�max�X� �
N−1

N Tr�X� − N−1
N �J��2 −

N�N−2�
4 . �32d�

For fixed �J��, these equations describe a polytope in the space
of the three eigenvalues of X. The polytope is shown in Fig.
3. The coordinates of the extreme points in the ��1 ,�2 ,�3�
space of the eigenvalues of X are

ax ª �N3

4
− �N − 1��

k

�Jk�2,
N2

4
,
N2

4 � �33�

and
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FIG. 3. �Color online� The polytope of separable states corre-

sponding to Eq. �32� for the eigenvalues of X for N=10 and for J�

=0� . Compare with Fig. 1�a�.
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bx ª ��
k

�Jk�2,
N2

4
,
N2

4 � . �34�

The other ak and bk points can be obtained by trivial relabel-
ing the coordinates.

Let us now show that in the large N limit for any X and J�

fulfilling Eq. �32�, there is a corresponding quantum state.

This would mean than the conditions with X and J� are com-
plete and there is not another condition that could detect

more entangled states based on knowing X and J�.

First, let us consider the case when J� and N fulfill the
conditions for completeness from observation 2�ii�, and there
are quantum states corresponding to ak and bk. The states
corresponding to ax and bx are �Ax

and �Bx
ª ��Bx

���Bx
�, re-

spectively, defined in Eqs. �18� and �19�. They are the same
states that correspond to the points Ax and Bx in Fig. 1. The
states corresponding to the other extreme points can be ob-
tained straightforwardly from these formulas by relabeling
the coordinates. Note that all these states have a diagonal X

matrix. Now, let us take a X that fulfills Eq. �32� and diag-
onalize it and denote it XD after the diagonalization. Then, it
is clear that XD can be obtained by “mixing” the X matrices
corresponding to ak and ak as

XD = �
l=ax,ay,az,bx,by,bz

plXl, �35�

where pl�0 and �kpl=1. Note that “mixing” X matrices is
in general not equivalent to mixing the states, since X is a
nonlinear function of the state. However, for all the states

corresponding to ak and bk, the vector J� is the same and that
all have diagonal X matrices. Therefore, the corresponding
state is

�D = �
l=Ax,Ay,Az,Bx,By,Bz

pl�l. �36�

Then, if �D is the quantum state corresponding to J� and XD

then the quantum state corresponding to J� and X can be

obtained from �D with coordinate rotations. Finally, if J� and
N are such that no quantum state exists that corresponds to
some of the points then an argument similar to the one in
observation 2 can be applied showing that at least there is a
quantum state corresponding to a point close to all bk�s and
because of that in the macroscopic limit, the characterization
is complete even in this case. Thus, we can state the follow-
ing.

Observation 5. The criteria from Eq. �30� are complete in
the sense that under the conditions of observation 2 �ii� or for
large N, they detect all entangled states that can be detected

knowing J� and the correlation matrix C.

IV. COMPARISON WITH OTHER SPIN-SQUEEZING
CRITERIA

In this section, we compare the optimal spin-squeezing
inequality �7� to other spin-squeezing criteria. First, let us
consider the original spin-squeezing criterion �3�. This in-

equality is satisfied by all points Ak and Bk, for Bz even
equality holds. It is instructive to compare the region de-
tected by Eq. �3� to the region detected by the optimal spin-
squeezing inequalities in the ��Jx

2� , �Jy
2� , �Jz

2�� space. For a

fixed J�, Eq. �3� corresponds to a horizontal plane in this
space shown in Fig. 4�a�. Equation �3� can be expressed in a
way that is independent from the choice of the coordinate
system

�min�X� � �J��2. �37�

Equation �37� is violated if Eq. �3� is violated for an optimal
choice of coordinate axes x, y, and z.

For a state of many particles that has almost a maximal
spin in some direction, the standard spin-squeezing inequal-
ity �3� is equivalent to our optimal spin-squeezing inequality
�7c�. To see that, let us now rewrite Eq. �7c� as
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FIG. 4. �Color online� �a� Comparison of the optimal spin-
squeezing inequalities and original spin squeezing for �k , l ,m�
= �x ,y ,z�, N=10, and J� = �1,0 ,2�. States detected by the latter are
below the horizontal plane. �b� Optimal spin-squeezing inequalities

and the inequality �40� for N=10 and J� = �0,0 ,0�. �c� Optimal spin

squeezing and criterion �45� for J� = �0,0 ,0�.
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��Jz�2

�Jx
2� + �Jy

2�
�

1

N − 1
−

N

2�N − 1���Jx
2� + �Jy

2��
. �38�

This can be transformed into

��Jz�2

�Jx�2 + �Jy�2 � 	 1

N − 1
−

N

2�N − 1���Jx
2� + �Jy

2��

�

�Jx
2� + �Jy

2�
�Jx�2 + �Jy�2 . �39�

Let us assume that N is large and the state has a large spin
pointing to the x direction, that is, �Jx

2�� N2

4 and �Jy
2�� N

4 . In
this case �Jk

2���Jk�2 and the right-hand side of Eq. �39� is
very close to 1

N . At this point, one can recognize Eq. �3�.
Reference �22� presented a generalized-spin-squeezing in-

equality for the entanglement detection that is identical to
Eq. �7b� of the optimal spin-squeezing inequalities. This in-
equality has been connected to susceptibility measurements
in solid-state systems �26,36�.

References �21,24� presented another generalized-spin-
squeezing inequality, for detecting two-qubit entanglement.
According to this criterion, for states with a separable two-
qubit density matrix

��Jk
2� + �Jl

2� − N
2 �2

+ �N − 1�2�Jm�2 � ��Jm
2 � +

N�N−2�
4 �2

�40�

holds. This inequality is satisfied by all points Ak and Bk,
while, when we choose �k , l ,m�= �x ,y ,z�, for Ax and Ay even
equality holds. Figure 4�b� shows the polytope of the optimal
spin-squeezing inequality together with the plane corre-
sponding to criterion �40�. Any state below the plane is de-
tected as two-qubit entangled by Eq. �40�. Note that Eq. �7c�
of the optimal spin-squeezing inequalities detects all states
detected by Eq. �40�. Note, however, that Eq. �40� detects
only states with two-qubit entanglement while Eq. �7c� de-
tects entangled states that can have separable two-qubit den-
sity matrices. Equation �40� can be expressed in a coordinate
system independent way as

�max�� 1
2N2 + 1 − 2 Tr�C��C − �N − 1�2��

� �N�N−2�
4 �2

− �Tr�C� − N
2 �2

. �41�

For states of the symmetric subspace, Eq. �40� can be
simplified to �21,24�

4��Jn�2

N
� 1 −

4�Jn�2

N2 . �42�

Violation of Eq. �42� for some coordinate axis z is a neces-
sary and sufficient condition for the two-qubit entanglement
for symmetric states �37�. It can also be expressed in a form
that is independent of the choice of coordinate axes �33�

�min�� + 1
NJ�J�T� �

N
4 . �43�

This can be rewritten with X as

�min�X� �
N2

4 . �44�

Finally, Refs. �23,25� present a generalized-spin-
squeezing inequality detecting entanglement close to sym-
metric Dicke states with �Jz�=0. For separable states, we
have

�Jx
2� + �Jy

2� �
N�N+1�

4 . �45�

The inequality is satisfied by all points Ak and Bk, for Ax and
Ay even equality holds. Figure 4�c� shows the polytope of the
optimal spin-squeezing inequality together with the plane
corresponding to criterion �45�. Any state corresponding to
points on the right-hand side of the vertical plane is detected
by Eq. �45� as entangled. Equation �45� can be rewritten in a
coordinate system independent way as

�min�C� � Tr�C� −
N�N+1�

4 . �46�

V. TWO-QUBIT ENTANGLEMENT VS MULTIPARTITE
ENTANGLEMENT

Next, it is interesting to ask what kind of entanglement is
detected by our criteria knowing that they contain only two-
body correlation terms of the form ��k

�i��k
�j�� and do not de-

pend on higher-order correlations. In fact, all quantities in
our inequalities can be evaluated based on the knowledge of
the average two-qubit density matrix

�av2 ª
1

N�N − 1��i�j

�ij , �47�

where �ij is the reduced density matrix of qubits i and j. Do
our criteria simply detect entanglement of the two-qubit re-
duced state of the density matrix? It will turn out that our
criteria can detect entangled states with separable two-qubit
density matrices.

Our entanglement detection scheme is related to the
N-representability problem �38�, i.e., to the problem of find-
ing multipartite quantum states that have a given set of states
as reduced states �39�. When detecting entanglement based
on �av2, we ask: is there a separable N-qubit state that has
�av2 as the average two-qubit reduced state. If the answer is
no then we know that the system is in an entangled state.
Clearly, if �av2 is entangled then there is not an N-qubit sepa-
rable quantum state that has it as a reduced state.

Interestingly, it turns our that it is also possible that �av2 is
separable; however, there is not an N-qubit separable state
that has �av2 as reduced state. In this case, we can conclude
that the system is an entangled state even if �av2 is separable.
A similar phenomenon can be observed in the theory of clus-
ter states �40�. These are states that are defined as eigenstates
of quasilocal operators. The total state is uniquely deter-
mined by these quasilocal properties of the reduced states,
and it can happen that the reduced states are separable, while
the total state is highly entangled �41�.

Let us elaborate this point a little bit more. If �av2 is sepa-
rable and it is in the symmetric subspace then it can always
be written in the form �21�
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�av2 = �
k

pk�k � �k �48�

with pure �k matrices. In this case, there always can be found
an N-qubit separable state that has this state as its reduced
state

�N = �
k

pk�l
�N. �49�

Hence, we can make the following statement.
Observation 6. If any generalized-spin-squeezing criterion

�i.e., an entanglement criterion containing only �Jk� and �Jk
2��

is violated by a symmetric state then the state is entangled
and the reduced two-qubit density matrix of the state is also
entangled. Note that this has already been known for the case
of the original spin-squeezing criterion �3� �42�.

On the other hand, if �av2 is not symmetric then it is
possible that �av2 is separable but there is not an N-qubit
symmetric separable state that has it as its reduced two-qubit
state. This is the reason that entanglement conditions based

on J� and K� can detect entangled states with a separable two-
qubit density matrix. Next, we will examine all our entangle-
ment criteria from this point of view.

First, we will rewrite Eq. �7� as an equation for the aver-
age two-qubit density matrix �av2. All expectation values in
these equations are computed for �av2,

� � 1, �50a�

� � −
1

N − 1
+

N

N − 1 �
i=x,y,z

��i � 1�2, �50b�

� � 1 + N���m � �m� − ��m � 1�2� , �50c�

� � − 1
N−1 + N

N−1 ���k � 1�2 + ��l � 1�2� + N
N−1 ��m � �m� ,

�50d�

where

� ª ��x � �x + �y � �y + �z � �z� . �51�

The first of the four optimal spin-squeezing inequalities
�Eq. �7a�� corresponds to Eq. �50a�. Again, this inequality is
valid for any quantum state and cannot be violated.

The second inequality �7b� corresponds to Eq. �50b�. It is
known that Eq. �7b� can detect states that have separable
two-qubit density matrices as have been shown in Ref. �27�.
Such a state is, for example, one of the many-body singlet
states,

�s 	 lim
T→0

exp�−
Jx

2 + Jy
2 + Jz

2

T
� . �52�

For this state �Jm
n �=0 for any m , n�0. For such a state for

increasing N, the average two-qubit density matrix �av2 be-
comes arbitrarily close to the totally mixed state. Thus, Eq.
�50b� is not a condition for detecting the entanglement of
�av2. Moreover, note that Eq. �7b� can even detect states that
are separable with respect to all bipartitions �26�.

The third inequality �7c� corresponds to Eq. �50c�. Let us
consider the state

� 	 exp�−
7Jz

2 − Jx
2 − Jy

2

T
� �53�

for N=8 and T=3. Direct calculation shows that this state is
detected by Eq. �7c� for �k , l ,m�= �x ,y ,z�. Thus, again, this is
not a condition for the separability of the two-qubit density
matrix.

The fourth condition is Eq. �7d� which corresponds to Eq.
�50d�. It detects the singlet state �s. This state has a separable
two-qubit density matrix, thus Eq. �7d� is not a condition on
the separability of the reduced density matrix.

Let us consider now the original spin-squeezing inequal-
ity �3�. It is known that the violation of this inequality im-
plies two-qubit entanglement for symmetric states �42�.
However, if the quantum state is not symmetric, Eq. �3� can
detect states with separable two-qubit density matrices. For
example, the following state violates Eq. �3�, while it does
not have two-qubit entanglement:

�sq 	 exp�−
2Jx

2 − Jz

T
� �54�

for N=8 and T=0.3.
Finally, let us consider the generalized-spin-squeezing in-

equality �45�. It can be proved that any state violating it has
two-qubit entanglement. This is because it can be rewritten
with expectation values computed for �av2 as

��x � �x� + ��y � �y� � 1. �55�

Any two-qubit state violating this criterion is entangled �27�.

VI. SPIN SYSTEMS GIVING VIOLATIONS FOR THE
OPTIMAL SPIN-SQUEEZING INEQUALITIES

In the recent years, considerable effort has been made to
create large scale entanglement in various physical systems:
in Bose-Einstein condensates of two-state bosonic atoms �8�,
in optical lattices of cold two-state atoms realizing the dy-
namics of an Ising spin chain �11,43,44�, and in atomic
clouds through interaction with light and appropriately cho-
sen measurements �5,14,15�. In the future, it is expected that
experimenters will also engineer the various ground states of
well-known spin chains. Entanglement detection in such sys-
tems were considered, for example, in Refs. �22,45–47�.
Note that there are methods available for measuring the vari-
ances of the collective spin components of atomic systems
through the interaction with light �48,49�.

In the light of the experiments, we ask the question: under
what circumstances are our optimal spin-squeezing inequali-
ties useful for detecting entanglement in the sense that they
outperform other spin-squeezing entanglement criteria? In
this section, we will show that our entanglement criteria are
especially useful in situations in which the state has a small

or zero mean spin J� and its reduced average two-qubit den-
sity matrix �av2 is separable.
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A. Ground state of spin systems

These will be, on one hand, one-dimensional spin chains.
On the other hand, we will consider spin systems corre-
sponding to the completely connected graph. We will con-
sider the following Hamiltonians. First let us consider the
Heisenberg chain with the Hamiltonian

HH ª �
k

�x
�k��x

�k+1� + �y
�k��y

�k+1� + �z
�k��z

�k+1�. �56�

Its ground state is a many-body singlet state. Thus, the opti-
mal spin-squeezing inequality �7b� is ideal for its detection.
Concerning how other criteria can detect its ground state as
entangled, we can state the following.

Observation 7. The T=0 ground state of a spin system
with a Hamiltonian without an external field cannot be de-
tected by the original spin-squeezing criterion �3�. The
ground state of a spin chain Hamiltonian without an external
field cannot be detected by the Korbicz-Cirac-Lewenstein
criterion �40�.

Proof. The first statement is true since criterion �3� cannot

be used for states with J� =0� since in Eq. �3� one has to divide
with the length of the collective spin components. The other
claim can be proved noting that for large N the two-qubit
density matrix �av2 of the ground state of spin chains without
an external field is unentangled. This can be seen realizing
that for the ground state of an N-qubit translationally invari-
ant chain

�av2 = 1
N−1 ��12 + �13 + �14 + . . . + �1N� , �57�

where �kl is the reduced two-qubit matrix of spins k and l.
However, for a spin chain, distant sites are less and less
correlated thus for large enough k we have �1k� 1

41. Hence,
for large enough N, the reduced two-qubit matrix �av2 is very
close to the totally mixed state and it is separable �50�; thus,
the state is not detected by the Korbicz-Cirac-Lewenstein
criterion �40�. �

The Hamiltonian of the isotropic XY chain is

HXY ª �
k

�x
�k��x

�k+1� + �y
�k��y

�k+1�. �58�

This system is similar to Eq. �56� from the point of view of
detecting its ground state by various entanglement criteria.
That is, �av2 is unentangled for this system and the spin-
squeezing criterion �3� cannot detect its ground state. More-
over, its ground state is detected by the optimal spin-
squeezing inequalities. While the XY chain is exactly
solvable �51�, the latter statement can be understood based
on simpler arguments using only qualitative properties of the
ground state. Let us consider a chain with a periodic bound-
ary condition. For the nondegenerate ground state of the XY
chain for even N, one has �Jz

2�=0 since Jz commutes with
HXY. The nearest-neighbor correlation is the strongest; that is
for the ground state

��l
�m��l

�n�� = �− 1�m−ncl,D�m,n� �59�

for l=x ,y where D�m ,n� is the distance of qubit m and n,
and cl,m�0 is a monotonous decreasing function of m.
Hence, due to translational invariance, it follows that

�Jl
2� =

N

4
+

1

4 �
m�n

��l
�m��l

�n�� �
N

4
−

N

2
�N �60�

for l=x ,y, where �Nª ���l
�1��l

�2���− ���l
�1��l

�3���. Note that �N
converges to a nonzero value for N→�. Using these argu-
ments, one can see that for any even N the ground state of
the XY chain violates Eq. �7b� and this violation is of order N
in the large N limit; that is, the relative violation does not
approach zero with increasing N. Hence it also follows that
chains with odd N must also violate Eq. �7b� in this limit.

The Hamiltonian

HS ª Jx
2 + Jy

2 + Jz
2 =

N

4
+

1

2 �
l=x,y,z

�
m�n

�l
�m��l

�n� �61�

corresponds to a system that has a Heisenberg interaction
between all spin pairs and has a very degenerate ground
state. The two-qubit density matrix of its T=0 thermal
ground state converges to the completely mixed state as N
increases, thus for large enough N it is separable �27�. With
respect to other qualitative statements about entanglement
detection, it is similar to the Heisenberg chain.

The Hamiltonian of the Lipkin-Meshkov-Glick model is
�52�

HLMG ª −
�

N
�Jx

2 + �Jy2� − hJz. �62�

For ��0, �=1, and h=0, the ground state is an N-qubit
symmetric Dicke states with N

2 excitations. For h�0 all the
symmetric Dicke states given in Eq. �24� can be obtained as
ground states of the system. These, except for the trivial
�0,N�= �0000. . .� and �N ,N�= �1111. . .� states, all have en-
tangled reduced two-qubit density matrix. Using Eq. �25�,
one can show that they are detected both by our optimal
spin-squeezing inequalities and the Korbicz-Cirac-
Lewenstein criterion �40�. However, they are not detected by
the original spin-squeezing inequality as can be seen by sub-
stituting Eq. �25� into the original spin-squeezing inequality.
For ��0, �=1, and h=0, the ground state is the same as for
the Hamiltonian �61�.

Finally, the summary of the results in this section is
shown in Table I.

B. Bound entanglement in spin chains

Next, we study spin models in thermal equilibrium. We
give the threshold temperatures for various spin models for
the Peres-Horodecki �PPT� criterion �53� and for our optimal
spin-squeezing inequality �7�. These temperatures are de-
fined as the values, below which the spin-squeezing inequali-
ties are violated of the state becomes NPT with respect to at
least one partition. The results are given in Table II. The
systems considered are the Heisenberg chain and the XY
chain defined in Eqs. �56� and �58�, the Heisenberg system
on a fully connected graph with the Hamiltonian �61�, the XY
system on a fully connected graph with the Hamiltonian
HLMG defined in Eq. �62� for h=0, �=1 and �=−1, and the
antiferromagnetic Ising spin chain in a transverse field de-
fined as
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HI ª �
k

�z
�k��z

�k+1� + B�
k

�x
�k�. �63�

The thermal state of the system is computed as
�th	exp�− H

kT � with k=1. In many cases, the temperature
bound for the PPT criterion is lower than for our spin-
squeezing criterion. This means that there is a temperature
range in which the quantum state has a positive partial trans-
pose with respect to all bipartitions while it is still detected
as entangled. Such quantum states are bound entangled and
since all bipartitions are PPT, no entanglement can be dis-
tilled from them with local operations and classical commu-
nications even if arbitrary number of parties is allowed to
join �54�. In particular, the results show that Eq. �7� can
detect fully PPT bound entanglement in Heisenberg and XY
chains, moreover, in Heisenberg and XY systems on a com-
pletely connected graph. Note that the bound temperature for
the optimal spin-squeezing inequalities for the Heisenberg
model on a fully connected graph is Tc�N for large N �27�.
On the other hand, our criteria do not seem to detect fully
PPT bound entanglement in Ising spin chains. Finally, Fig. 5
shows the results for the Heisenberg and XY and chains,

together with the bounds for the computable cross norm or
realignment �CCNR� criterion �55�. The latter is often a good
indicator of bound entanglement; however, in these systems
it does not detect bound entanglement.

C. Bound entanglement in a nanotubular system

Let us finally investigate a finite system showing bound
entanglement at high temperatures. The nanotubular system
Na2V3O7 is a prominent example of a low-dimensional
quantum magnet. The compound was synthesized in 1999 by
Millet et al. �56�, who also provided a detailed description of
its structure. Every nine V4+O5 pyramids form a ring, by
sharing edges and corners; furthermore those rings accumu-
late to nanotubes with Na atoms located in the center of and
between them. Due to the complex structure of this system
some years passed, until an effective model for the exchange
interactions could be found �57�. The coupling terms be-
tween the rings are considerably smaller than the inter-ring
coupling and therefore can be neglected in a first approxima-
tion. Effectively the system can be described as a nine site
antiferromagnetic spin-1

2 Heisenberg ring showing nearest-

TABLE I. Table showing for several spin Hamiltonians which entanglement condition can detect their
T=0 thermal ground state in the large particle number limit. For the Hamiltonians, see text. For the Lipkin-
Meshkov-Glick model �=1 is assumed.

Hamiltonian
Spin squeezing

Eq. �3�
Korbicz-Cirac-Lewenstein

Eq. �40�
Optimal spin squeezing

Eq. �7�

Heisenberg chain − − +

XY chain − − +

Heisenberg model fully connected − − +

HLMG ��0 − + +

HLMG ��0, h=0 − − +

TABLE II. Critical temperatures for the PPT criterion and Eq. �7� for Heisenberg, XY, and Ising spin
chains of various size and for the Heisenberg any XY systems on a fully connected graph. For the definitions
of the Hamiltonians, see text.

N 3 4 5 6 7 8 9

Heisenberg Eq. �7b� 5.46 5.77 5.72 5.73 5.73 5.73 5.73

Chain PPT 4.33 5.47 4.96 5.40 5.17 5.38 5.25

XY Eq. �7b� 3.09 3.48 3.39 3.41 3.41 3.41 3.41

Chain PPT 2.56 3.46 3.07 3.34 3.19 3.32 3.24

Heisenberg Eq. �7b� 2.73 3.73 4.73 5.72 6.72 7.72 8.72

model f.c. PPT 2.16 2.73 3.17 3.71 4.17 4.70 5.17

XY Eq. �7b� 1.54 2.08 2.59 3.10 3.60 4.11 4.61

model f.c. PPT 1.28 1.82 2.23 2.74 3.20 3.71 4.19

Ising chain Eq. �7c� 0.67 0.89 0.55 0.78 0.50 0.71 0.46

B=0.5 PPT 1.08 1.26 1.17 1.26 1.21 1.26 1.22

Ising chain Eq. �7c� 1.22 1.29 1.14 1.17 1.10 1.11 1.08

B=1 PPT 1.49 1.71 1.61 1.71 1.65 1.71 1.67

Ising chain Eq. �7c� 2.01 1.97 1.90 1.87 1.85 1.83 1.82

B=2 PPT 2.15 2.43 2.30 2.43 2.36 2.43 2.38
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neighbor and next-to-nearest-neighbor interactions. The
Hamiltonian can be written as

H ª �
k=1

9
C1

4
�� �k� · �� �k+1� +

C2
k

4
�� �k� · �� �k+2�, �64�

with periodic boundary conditions and approximately homo-
geneous parameters for the nearest-neighbor interactions C1
=200 K and C2

k =140 K for k=2,3 ,5 ,6 ,8 ,9, while C2
k =0 in

all other cases �see Fig. 6�. The magnetic susceptibility of
this simplified model coincides well with the experimental
results above a temperature of about 10 K �57�.

For the given Hamiltonian, the thermal state is entangled
for low temperatures and will become separable at a certain
point when increasing the temperature. For every separabil-
ity criterion, a critical temperature Tc can be found. Doing so
for the spin-squeezing inequalities shows that the critical
temperature of the inequality �7d� is Tc

�7d�=182.8 K while
the inequality �7b� gives Tc

�7b�=363.6 K, the other ones do
not detect any entanglement at all. The critical temperature
of Eq. �7b� has already been known from Ref. �58�, where
the magnetic susceptibility of the system has been used as an
entanglement witness, which effectively results in the same
criterion �26,36�. Furthermore, we have computed the critical
temperature of the PPT criterion according to all bipartite
splittings, resulting in a maximal temperature of Tc

PPT

=303.9 K for the splitting A= �1,3 ,4 ,6 ,7 ,9� vs B

= �2,5 ,8�. So we find a transition from free to bound en-
tanglement at approximately room temperature.

VII. CONCLUSIONS

We presented a family of entanglement criteria that detect
any entangled state that can be detected based on the first and
second moments of collective angular momenta. We also
showed that these criteria can be extended such that they
detect all entangled states that can be detected based on
knowing the expectation values of the spin components and
the correlation matrix. In spite of that, these criteria do not
contain multiqubit correlation terms; they do not merely de-
tect the entanglement of the two-qubit reduced state. They
can even detect entangled states with separable two-qubit
matrix. For further research, it would be very interesting to
extend our results to ensembles of particles with a higher
spin, e.g., spin-1 particles.
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