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Quantum state tomography suffers from the measurement effort increasing exponentially with the
number of qubits. Here, we demonstrate permutationally invariant tomography for which, contrary to
conventional tomography, all resources scale polynomially with the number of qubits both in terms of the
measurement effort as well as the computational power needed to process and store the recorded data. We
demonstrate the benefits of combining permutationally invariant tomography with compressed sensing by
studying the influence of the pump power on the noise present in a six-qubit symmetric Dicke state, a case
where full tomography is possible only for very high pump powers.
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Introduction.—The number of controllable qubits in
quantum experiments is steadily growing [1,2]. Yet, to fully
characterize a multiqubit state via quantum state tomography
(QST), the measurement effort scales exponentially with the
number of qubits. Moreover, the amount of data to be saved
and the resources to process them scale exponentially, too.
Thus, the limit of conventional QST will soon be reached.
The following question arises: how much information about
a quantum state can be inferred without all the measurements
a full QST would require? Protocols have been proposed
which need significantly fewer measurement settings if one
has additional knowledge about a state, e.g., that it is of low
rank, a matrix product state, or a permutationally invariant
(PI) state [3–8]. Some of these approaches only require a
polynomially increasing number of measurements and even
offer scalable postprocessing algorithms [5,8]. Yet, it is
important to test the different approaches and evaluate their
results for various quantum states.
Here, we implement and compare four different QST

schemes in a six-photon experiment. In detail, we perform
the largest QST of a photonic multiqubit state so far. We
use these data as a reference for a detailed evaluation of
different tomography schemes, which enable the state
determination with significantly fewer measurements.
The recently proposed, scalable PI analysis is implemented

here and thus enables us, for the first time, to also perform
the numerical evaluation with polynomial resources only.
We evaluate the convergence of compressed sensing (CS)
schemes and show that the combination of PI and CS can
further reduce the measurement effort, without sacrificing
performance. We demonstrate the usability of these sig-
nificantly improved methods to characterize the effects of
higher-order emission in spontaneous parametric down-
conversion (SPDC), an analysis which would not have been
possible without the novel tomography schemes.
Scalable scheme for measurements.—Let us first con-

sider the measurement effort needed for tomography. For full
QST, each N-qubit state is associated with a normalized
non-negative Hermitian matrix ϱ with 4N − 1 real free
parameters. Since all free parameters have to be determined,
any scheme that is suitable to fully analyzing an arbitrary
state, such as, e.g., the standard Pauli tomography scheme,
suffers from an exponentially increasing measurement effort
[9,10]. PI states, in contrast, are described by only�
N þ 3

N

�
− 1 ¼ OðN3Þ free parameters. Tomography in

the PI subspace can be performed by measuring (global)
operators of the form A⊗N

i with Ai ¼ ~ni~σ, i.e., measurements
of the polarization along the same direction ~ni for every
photon [7]. Here, j~nij ¼ 1 and ~σ ¼ ðσx; σy; σzÞ with Pauli
operators σi (i ¼ x; y; z). Each single measurement setting
A⊗N
i delivers N expectation values of the operators

Mn
i ¼ ð1=N!ÞPkΠk½j0iih0j⊗ðN−nÞ ⊗ j1iih1j⊗n�Π†

k, where
the summation is over all permutations Πk and i refers to
the eigenbasis of Ai. This reduces the number of necessary
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settings to DN ¼
�
N þ 2

N

�
¼ 1

2
ðN2 þ 3N þ 2Þ ¼ OðN2Þ.

Note that if one allows global entangled measurements, this
number can be further reduced [11]. Most importantly,
whether an unknown N-qubit state is close to being PI
can be checked in advance by measuring the settings
σ⊗N
x ; σ⊗N

y , and σ⊗N
z . These measurements are already

sufficient to give a lower bound for the overlap with the
symmetric subspace [7,12].
Scalable representation of states and operators.—The

above approach not only reduces the experimental effort, it
also offers the possibility to efficiently store and process the
measured data. Describing states in the PI subspace enables
an efficient representation with only polynomial scaling of
the storage space and processing time [8,13].
Consider the angular momentum basis states jj; jz; αi

for the N-qubit Hilbert space, with ~J2jj; jz; αi ¼
jðjþ 1Þjj; jz; αi and Jzjj; jz; αi ¼ jzjj; jz; αi, where the
total spin numbers are restricted to be j ¼ jmin; jmin þ
1;…; N=2 starting from jmin ¼ 0 for N even and jmin ¼ 1

2

forN odd, while jz ¼ −ðN=2Þ;−ðN=2Þ þ 1;…; N=2. Here,
α ¼ 1; 2;…; dj is a label to remove the degeneracy
(of degree dj [14]) of the eigenstates of ~J2 and J2z . In this
basis, PI states can bewritten in a simple block diagonal form

ϱPI ¼ ⨁
N=2

j¼jmin

1dj
dj

⊗ pjϱj; ð1Þ

with ϱj being the density operators of the spin-j subspace
and pj a probability distribution. Hence, it is sufficient to
consider only the N=2 blocks ~ϱj ¼ pjϱj=dj (of which
each has a multiplicity of dj; see Fig. 1) with the largest
block—the symmetric subspace—being of dimension
ðN þ 1Þ × ðN þ 1Þ and multiplicity dN=2 ¼ 1. Conse-
quently, a PI state can be stored efficiently.
Even if the state to be analyzed is not PI, as long as the

observable to be measured is PI, one can hugely benefit
from the scheme, since a similarly scalable decomposition
can be found for any PI operator O, i.e., O ¼ ⨁

j
1dj ⊗ Oj.

Together with Eq. (1), this yields an efficient way to also
calculate the expectation values hOi ¼ TrðϱOÞ ¼

P
jpjTrðϱjOjÞ for non-PI states. Note that while, in the

regular case, the trace has to be taken over the product of
two 2N-dimensional matrices, now we only have about N

2

terms with traces of at most ðN þ 1Þ-dimensional matrices.
Again, the effort reduces from exponential to polynomial.
For the six-qubit case (j ∈ jmin ¼ 0; 1; 2; N=2 ¼ 3), this
means that the state to be analyzed as well as each
measurement operator can be described by only four
Hermitian matrices of size 7 × 7, 5 × 5, 3 × 3, and
1 × 1, respectively, reducing the number of parameters

from 46 − 1 ¼ 4095 to

�
9

6

�
− 1 ¼ 83 only.

Data analysis starts with the counts cni observed meas-
uring Mn

i and the frequencies fni ¼ cni =
P

kc
k
i , respectively.

Solving the system of linear equations fni ≈ hMn
i i ¼

TrðϱMn
i Þ for the free parameters of ϱ usually results in a

nonpositive and thus unphysical density matrix (ϱ≱0) due
to statistical errors and misalignment. Here, typically, a
maximum likelihood (ML) fitting algorithm is used to find
the physical state that optimally agrees with the measured
data [9,15,16]. We use convex optimization [8,19], which
guarantees a unique minimum and fast convergence. The
performance of our algorithm is illustrated best by the fact
that a 20-qubit PI state can be reconstructed in fewer than
10 min on a standard desktop computer.
State reconstruction of low rank states and compressed

sensing.—As shown recently, low rank states, i.e., states
with only a few nonzero eigenvalues, enable state
reconstruction even if the underlying set of data obtained
from random Pauli measurements is incomplete [3]. There,
the measurement effort to analyze a state of rank r with r2N

free parameters scales like Oðr2N log 2NÞ—clearly achiev-
ing optimal scaling up to a log factor. Despite the still
exponential scaling, the square root improvement can be
considerable. Since, in many cases, the state to be exper-
imentally prepared is at the same time PI and of low rank,
we demonstrate here for the first time that combining the
two methods is possible [16,20].
Experimental state tomography.—Let us now compare

the various QST schemes. In particular, we evaluate the
number of settings necessary to obtain (almost) full knowl-
edge about the state. As a reference, we perform, for the
first time, full QST of a six-photon state. This is possible
only at very high pump power (8.4 W) of the down-
conversion source where we collect data for the complete
set of Pauli settings. PI tomography is performed to test it
against full QST and to analyze states emitted for lower
pump powers. For both strategies, we also analyze the
convergence of CS tomography for incomplete data.
The six-photon state observed in this work is the

symmetric Dicke state jDð3Þ
6 i. In general, symmetric

Dicke states are defined as

jDðnÞ
N i ¼

�
N
n

�
−1=2X

i

PiðjH⊗ðN−nÞi ⊗ jV⊗niÞ; ð2Þ
FIG. 1 (color online). Every PI state can be decomposed into a
block diagonal form. Exemplarily shown is the combination of dj
block matrices ~ϱj which are all identical.
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where jH=Vii denotes horizontal or vertical polarization in
the ith mode and the Pi represent all the distinct permu-

tations. In order to experimentally observe jDð3Þ
6 i, we

distribute an equal number of H and V polarized photons
over six output modes and apply conditional detection (for
details, see the Supplemental Material [16] and Ref. [21]).
The setup uses cavity enhanced SPDC [22] with special
care taken to further reduce losses of all components and to
optimize the yield of jDð3Þ

6 i.
Data are recorded at a pump power of 8.40� 0.56 W

over 4 min for each of the 36 ¼ 729 Pauli settings. The six-
photon count rate was 58 events per minute on average,
leading to about 230 events per basis setting within a total
measurement time of approximately 50 h [24]. The
reconstructed density matrix can be seen in Fig. 2(a).
Table I lists the fidelity [25] with all the various Dicke
states. Their sum reaches high values, proving that the state
is close to the symmetric subspace.
Evidently, the experimental state is a mixture of mainly

jDð2Þ
6 i, jDð3Þ

6 i, and jDð4Þ
6 i, and thus CS might be used

beneficially. The following question arises: how many
settings are required for CS for a faithful reconstruction
of the state? We chose random subsets of up to 300 settings
from the 729 settings for full tomography. Figure 2(d) gives
the probability distribution of the fidelity of the recon-
structed matrix for a bin size of 0.01 with respect to the
results of full tomography. While, for a low number of
settings (< 10), the results are randomly spread out, the
overlap is already, on average, ≥ 0.800 for 20 settings. We
find that to reach a fidelity of ≥ 0.950, one requires about
270 settings. Figure 2(c) shows the density matrix obtained
from 270 settings ½FðϱCS; ϱfullÞ ¼ 0.950�.
PI tomography should be clearly more efficient. To test its

applicability, we first determined the lower bound for the

projection of the state onto the symmetric subspace, i.e., the
largest block in Fig. 1, hPð6Þ

s i from the settings σ⊗6
x ; σ⊗6

y , and
σ⊗6
z by analyzing all photons under �45°, right- or

left-circular, and H=V polarization. We found that
hPð6Þ

s i ≥ 0.922� 0.055, indicating that it is legitimate to
use PI tomography, which for six qubits only requires 25
more settings [16].Under thesameexperimental conditions as
before and 4 min of data collection per setting, we performed
theexperimentwithin2honly.ThedensitymatrixϱPI obtained
is shown in Fig. 2(b), with its symmetric subspace shown
in Fig. 3(a). The fidelities with the symmetric Dicke states for
PI tomography can be found again in Table I. (For the

projector to the Dicke state jDðnÞ
N i, all fOjgkl ¼ 0, except

for fON=2gnþ1;nþ1 ¼ 1.) The overlap between the

TABLE I. Overlap with the symmetric Dicke states determined
from full tomography, PI tomography with 28 settings, CS with
270 settings, and CS in the PI subspace (PI,CS) with 16 settings.
The fidelities for all tomography schemes were determined from
the respective ML reconstructed states. Nonparametric boot-
strapping [23] was performed from which the corresponding
standard deviations were determined as < 0.005, < 0.015,
< 0.008, and < 0.020 for full tomography, PI tomography,
CS, and CS in the PI subspace, respectively.

State Full PI CS PI, CS

jDð0Þ
6 i 0.001 0.001 0.001 0.002

jDð1Þ
6 i 0.005 0.008 0.011 0.006

jDð2Þ
6 i 0.197 0.222 0.181 0.207

jDð3Þ
6 i 0.604 0.590 0.615 0.592

jDð4Þ
6 i 0.122 0.127 0.118 0.119

jDð5Þ
6 i 0.003 0.004 0.003 0.005

jDð6Þ
6 i 0.000 0.003 0.001 0.004P

0.933 0.954 0.929 0.935

FIG. 2 (color online). ML reconstruction of the state jDð3Þ
6 i

obtained from (a) full and (b) PI tomography and (c) CS with 270
settings performed at a pump power of 8.4 W. The respective
fidelities are 0.604, 0.590, and 0.615 with mutual overlaps
of Fðϱfull; ϱPIÞ ¼ 0.922, Fðϱfull; ϱCSÞ ¼ 0.950, and FðϱPI; ϱCSÞ ¼
0.908. (d) Probability to obtain a certain fidelity for CS with a
certain number of randomly chosen settings in comparison with
full tomography.

FIG. 3 (color online). Symmetric subspaces (j ¼ 3) obtained
with (a) PI tomography and (b) CS in the PI subspace with 16
settings. The central bars can be associated with the target state
jDð3Þ

6 i and the small bars next to it with jDð2Þ
6 i and jDð4Þ

6 i
originating from higher-order noise. (c) Probability to observe a
certain fidelity for arbitrarily chosen tomographically incomplete
sets of settings in comparison with PI tomography from 28
settings. For 16 settings, the overlap is ≥ 0.950 on average.
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reconstructedstatesusingeitherfullorPI tomographyis0.922,
which is equivalent to the fidelity of 0.923 between full
tomographyanditsPIpart.Clearly,PI tomographyrapidlyand
precisely determines the PI component of the state.
PI tomography with CS.—To speed up analysis even

further, based on subsets of the data used for PI tomog-
raphy, we derived the density matrix ϱPI;CS; see Fig. 3(b).
Here, the fidelity averaged over a series of different samples
is above 0.950 for 16 or more settings [Fig. 3(c)]. Again,
both methods are compatible within 1 standard deviation.
In summary, our results prove that PI tomography (with
CS) enables precise state reconstruction with minimal
experimental and computational effort.
Application to noise analysis.—As the count rates for

six-photon states depend on the cube of the pump power,
full QST is not possible for lower pump power within
reasonable time and thus does not allow us to analyze the
features of multiphoton states obtained from SPDC. As
SPDC is a spontaneous process, with certain probability,
there are cases where eight photons have been emitted but
only six have been detected, leading to an admixture of
ϱ
Dð2Þ

6

and ϱ
Dð4Þ

6

. Ideally, the amplitude of the two admixtures

should be the same, but, due to polarization dependent
coupling efficiencies of H and V photons [26,27], this
is not the case. Therefore, we extended the noise model
[28] to better specify the experimental state using
ϱnoiseexp ðq; λÞ ¼ ð1 − qÞϱ

Dð3Þ
6

þ qϱasym6 ðλÞ, with ϱasym6 ðλÞ ¼
4
7
ϱ
Dð3Þ

6

þ 3=14½ð1þ λÞϱ
Dð2Þ

6

þ ð1 − λÞϱ
Dð4Þ

6

�, the noise q,

and the asymmetry parameter λ. Both q and λ can be
determined from the fidelities to the Dicke states (see also
the Supplemental Material [16]). At 8.4 W, noise param-
eters of q ¼ 0.807� 0.013 and λ ¼ 0.234� 0.015 were
obtained from full tomography, which agree well with
those from PI tomography (q ¼ 0.867� 0.041 and
λ ¼ 0.273� 0.059). After convincing ourselves that (CS)
PI tomography is in excellent agreement with full QST, we
can now also perform tomography for low pump powers.

We performed PI analysis at 3.7, 5.1, 6.4, and 8.6 W [see
Fig. 4(a)] with sampling times of 67, 32, 18, and 15 h and
average counts per setting of 340, 390, 510, and 610,
respectively. PI tomography shows an increase of the noise
parameter q from 0.677� 0.029 for 3.7 W to 0.872� 0.023
for 8.6 W due to the increasing probability of eight-photon
emission for high pump power [29]. Note that the ratio
between six-photon detection from eight-photon emission
relative to detection from six-photon emission is given by
q=ð1 − qÞ; i.e., for a pump power of 8.6W, we obtain sixfold
detection events with 90% probability from eight photon
emissions, of which two photons were lost. Although fluc-
tuating, the asymmetry parameter λ does not show significant
dependence on the pump power and lies in the interval
[0.136� 0.042, 0.200� 0.053] for PI tomography (within
[0.101� 0.116, 0.190� 0.071] for CS in the PI subspace).
This confirms that the difference in the coupling efficiency of
H andV does not changewith the pumppower [see Fig. 4(b)].
The fidelity between the ML fits and the noise model
ϱnoiseexp ðp; λÞ is > 0.925 for all pump levels, and, for CS in
thePI subspace, it is> 0.897.Thehighvalues indicate thatour
noise model adequately describes the experimental results.
As an examplewhere full knowledge of ϱ is necessary, let us

consider the quantum Fisher information FQ which measures
the suitability of ϱ to estimate the phase θ in an evolution
Uðθ;ℋÞ ¼ e−iθℋ [30]. Here, wewant to test whether, in spite
of the higher-order noise, the reconstructed states still exhibit
sub-shot-noise phase sensitivity. For ℋ, we choose the
collective spin operator Jx ¼ 1=2

P
N
i¼1 σ

ðiÞ
x , where σðiÞx is

σx acting on the ith particle. In the case of N ¼ 6, a value
FQ > 6 indicates sub-shot-noise phase sensitivity. We
observed 11.858� 0.576, 10.904� 0.528, 10.289� 0.468,
and 9.507� 0.411 for the corresponding pump powers from
3.7 to 8.6 W [29] [see Fig. 4(b)]; i.e., sub-shot-noise phase
sensitivity is maintained for high pump powers.
Conclusions.—We compared standard quantum state

tomography with the significantly more efficient permutation-
ally invariant tomography and alsowith compressed sensing in
the permutationally invariant subspace. For this purpose, we

used data of the symmetric Dicke state jDð3Þ
6 i obtained from

spontaneous parametric down-conversion of very high pump
power. All methods give compatible results within their
statistical errors. The number of measurement settings was
gradually reduced from 729 for full tomography, to 270 for
compressed sensing, to 28 for permutationally invariant
tomography, and to only 16 for compressed sensing in the
permutationally invariant subspace, giving, in total, a reduction
of about a factor of 50 without significantly changing the
quantities specifying the state. We applied this highly efficient
state reconstruction scheme to study the dependence of higher-
order noise on the pump power, clearly demonstrating its
benefits for the analysis of multiqubit states required for future
quantum computation and quantum simulation applications.
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