
Supplemental Material for
“Activating hidden metrological usefulness”

Géza Tóth
Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain

Donostia International Physics Center (DIPC), P.O. Box 1072, E-20080 San Sebastián, Spain
IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain

Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary

Tamás Vértesi
MTA Atomki Lendület Quantum Correlations Research Group, Institute for Nuclear Research,

Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen, Hungary

Paweł Horodecki
International Centre for Theory of Quantum Technologies, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland

Faculty of Applied Physics and Mathematics, National Quantum Information Centre, Gdańsk University of Technology,
Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

Ryszard Horodecki
International Centre for Theory of Quantum Technologies, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics

and Informatics, University of Gdańsk, Wita Stwosza 57,80-308 Gdańsk, Poland
(Dated: May 19, 2020)

The supplemental material contains some additional results. We present some properties of the
metrological gain. We discuss the relation between the error propagation formula and the quantum
Fisher information. We present some details of the optimization over the c2 parameter of the
Hamiltonian. We calculate the optimal Hamiltonian analytically for isotropic states and Werner
states. We present concrete calculations for metrology with two-qubit singlets and ancillas. We show
how to use our formulas to bound the metrological usefulness by a single operator expectation value.
We consider metrology with multi-particle states, if some particles are united into a single party.
We consider metrology with an infinite number of copies of arbitrary entangled pure states. We
present an alternative optimization over local Hamiltonians. We present numerical results concerning
metrology with random pure and mixed states. We determine the maximum achievable precision
in a multiparticle system. We define the robustness of metrological usefulness. We show how to
witness the dimension of a quantum state based on quantum metrology.

PROPERTIES OF THE METROLOGICAL GAIN
IN MULTIPARTITE SYSTEMS

We consider the question, how the metrological gain
defined in Eq. (6) behaves if we add an ancilla to the
subsystem or provide an additional state, as depicted by
Fig. 1. We will now show that it cannot decrease in
neither of these cases. We will also show that the metro-
logical gain is convex.

(i) Let us see first adding an ancilla "a" to the system
AB. For the gain, we have

g(%AB) = gHopt
(%AB)

= gH0
opt

(|0ih0|a ⌦ %AB)  g(|0ih0|a ⌦ %AB), (S1)
where a Hamiltonian for the aAB system is given as

H
0

opt
= 11a ⌦ (Hopt)AB. (S2)

Here, Hopt is the Hamiltonian acting on AB for which the
gain is the largest. The second equality in Eq. (S1) holds,

since the quantum Fisher information has the property

FQ[%1 ⌦ %2,H1 ⌦ 11+ 11⌦H2] = FQ[%1,H1] +FQ[%2,H2].
(S3)

For H1 = 0, we have the special case

FQ[%1 ⌦ %2, 11 ⌦H2] = FQ[%2,H2]. (S4)

The inequality in Eq. (S1) holds, since in the extended
system there might be a Hamiltonian with a gain larger
than that of H0

opt
. In other words, for any H and any %,

gH(%)  g(%) holds.
(ii) For an additional copy of a state, analogously, we

have

g(%AB) = gHopt
(%AB)

= gH00
opt

(%AB ⌦ �A0B0)  g(%AB ⌦ �A0B0), (S5)

where a Hamiltonian for the ABA’B’ system is given as

H
00

opt
= (Hopt)AB ⌦ 11A0B0 . (S6)
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Here, �A0B0 is the additional state provided. In the spe-
cial case of two copies we have � = %. If we replace the
role of %AB and �A0B0 in Eq. (S5), we arrive at

g(�AB)  g(�AB ⌦ %A0B0). (S7)

From Eqs. (S5) and (S7), after trivial relabelling of the
parties follows

g(%AB ⌦ �A0B0) � max[g(%AB), g(�A0B0)], (S8)

where max(a, b) denotes the maximum of a and b.
(iii) The metrological gain is convex under mixing as

can be seen from the serious of inequalities

g(p%+ (1� p)�) = gHopt
(p%+ (1� p)�)

 pgHopt
(%) + (1� p)gHopt

(�)

 pg(%) + (1� p)g(�), (S9)

where 0  p  1. Here, Hopt is the Hamiltonian acting
on p% + (1 � p)� for which the gain is the largest. The
first inequality is due to the convexity of the quantum
Fisher information. The second inequality is due to the
fact, that in general for any H and any %, gH(%)  g(%)
holds.

RELATION BETWEEN THE
ERROR-PROPAGATION FORMULA AND THE

QUANTUM FISHER INFORMATION

Equation (18) has been described from various point
of views in Refs. [36–38]. These ideas have been used in
Refs. [2, 23–25]. Related ideas have also been used in
Refs. [39, 40] for the optimization of the quantum Fisher
information.

For completeness, now we prove Eq. (18) very briefly.
Let us consider the uncertainty relation [26, 38]

(�A)
2

%FQ[%, B] � hi[A,B]i
2

%, (S10)

where % is a quantum state, and A and B are observ-
ables. Ref. [38] stresses the fact that Eq. (S10) is just
a strengthening of the Heisenberg uncertainty relation.
Then, making the substitutions in Eq. (S10) that B = H,
A = M , we find that

(�✓)2M ⌘
(�M)

2

hi[M,H]i2
� 1/FQ[%,H] (S11)

holds, where the left hand-side is just the error prop-
agation formula. We now show that setting M to the
symmetric logarithmic derivative Mopt given in Eq. (22)
is saturated. This can be proved using the identities
Tr(M2

opt
%) = FQ[%,H], Tr(Mopt%) = 0, hi[Mopt,H]i =

Tr(M2

opt
%).

Note that Eq. (18) is different from the Cramér-Rao
bound, (2), and the relation between (�✓)2 and (�✓)2M
is not trivial. For any estimator

(�✓)2 �
1

m
(�✓)2M=Mopt

(S12)

holds. In the limit of large number of repetitions m, and
if certain further conditions are fulfilled, Eq. (S12) can
be saturated by the best estimator. Then, such a (�✓)2

would also saturate the Cramér-Rao bound, (2) [20].

ANALYSIS OF THE OPTIMIZATION METHOD

The maximization of the error propagation formula can
be expressed using a variational formulation as [39]

max
H

max
M

1/(�✓)2M

= max
H

max
M

hi[M,H]i
2/(�M)

2

= max
H

max
M

hi[M,H]i
2/hM2

i

= max
H

max
M

max
↵

{�↵2
hM2

i+ 2↵hi[M,H]i}

= max
H

max
M 0

{�h(M 0
)
2
i+ 2hi[M 0,H]i}, (S13)

where M 0 takes the role of ↵M. Then, the function is
concave in M 0 and linear in H, and the two-step see-saw
algorithm we have described will find better and better
Hamiltonians. However, the function in Eq. (S13) is not
strictly concave in (H,M 0

). Hence, our iterative numer-
ical procedure will always lead to Hamiltonians with an
increasing quantum Fisher information, however, it is not
guaranteed to find a global optimum. Based on exten-
sive numerical experience, for a mixed state in bipartite
systems of dimension 3⇥ 3 the algorithm converges very
fast, and from 10 trials at least 2-3, typically more will
lead to the global optimum. The 10 trials of 100 steps
can take 5 seconds on a state of the art laptop computer.
For larger systems, it is worth to make many trials for
few steps, and continue the best one for many steps.

We can understand the expression better as follows. If
we subtract a term 4hH

2
i from the expression appearing

on the right-hand side of Eq. (S13), then we will arrive
at

� hZZ†
i, (S14)

where the non-Hermitian matrix is defined as

Z = M 0
+ i2H. (S15)

Equation (S14) is clearly concave in (H,M 0
) but a maxi-

mization will converge to (H,M 0
) = 0. The maximization

in Eq. (S13) is equivalent to maximizing Eq. (S14) with
a quadratic equality constraint hH2

i = c, where c is some
constant. We can maximize Eq. (S14) for a range of c val-
ues, and the largest of these maxima will be the global
maximum.

EFFICIENT OPTIMIZATION OVER c2.

Let us define H̃k = Hk/ck. Based on Eq. (20),

� 11  H̃k  11 (S16)
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hold. Then, the Hamiltonian, (1), becomes

H = c1H̃1 + c2H̃2. (S17)

In this section, we show how to optimize the metrological
performance for Hamiltonians of the form (S17). This
will mean an optimization over c2, while c1 can be taken
to be 1.

For a such H̃k Hamiltonians, the expression in Eq. (19)
can be written as

hi[M,H]i = c1Tr(A1H̃1) + c2Tr(A2H̃2), (S18)

where An = Tr{1,2}\n(i[%,M ]). Then, in order to maxi-

mize
q

(�✓)2M/F (sep)

Q
, we need to calculate

max
c1,c2

c1Tr(A1H̃1) + c2Tr(A2H̃2)

4

p
c2
1
+ c2

2

. (S19)

The optimal value is at

c2
c1

=
Tr(A2H̃2)

Tr(A1H̃1)
. (S20)

Without the loss of generality, we set c1 = 1, then c2 can
be obtained from Eq. (S20).

One can add a third step to the two-step procedure of
the paper, in which c2 is updated according to the for-
mula Eq. (S20). For a smoother convergence, one can
change c2 not abruptly, but only by a small value chang-
ing it in the direction of the value suggested by Eq. (S20).

METROLOGY WITH ISOTROPIC STATES

We will now consider quantum metrology with
isotropic states, which are defined as [42]

%p = pP (+)

d + (1� p)
11
d2

, (S21)

where P (+)

d is a projector to the maximally entangled
state | 

(me)
i defined in Eq. (7).

We consider a Hamiltonian of the form

Hcoll = H1 ⌦ + ⌦H2. (S22)

The subscript "coll" indicates that the Hamiltonian acts
on both subsystems, in contrast to H1 and H2 that act
only on one of the subsystems. The Hamiltonian is local,
since it does not contain interactions terms.

Isotropic states are invariant under transformations of
the type

U ⌦ U⇤, (S23)

where U is a single-qudit unitary and "⇤" denotes
element-wise conjugation. Hence, isotropic states are in-
variant under the Hamiltonian

H
(iso)

inv
(H) = K ⌦ � ⌦K

⇤, (S24)

where K is a Hermitian operator.
Observation S1.—For short times, the action of the

Hamiltonian Hcoll given in Eq. (S22) is the same as the
action of

H
(iso)

coll
(H

(iso)
) = H

(iso)
⌦ + ⌦ (H

(iso)
)
⇤, (S25)

where the single party Hamiltonian is defined as

H
(iso)

= (H1 +H
⇤

2
)/2. (S26)

Proof. Let us define

�
(iso)

= (H
⇤

2
�H1)/2. (S27)

In the rest of the section, we omit the superscript "iso"
in H

(iso)

inv
,H(iso),�(iso).

Then, simple algebra shows that

Hcoll +Hinv (�) = H
(iso)

coll
. (S28)

Hence, for small t

e�iHcollte�iHinv(�)t
⇡ e�iH(iso)

coll
(H)t (S29)

holds. The isotropic state is invariant under the action of
Hinv(�), since the corresponding unitary is of the form
given in Eq. (S23). Hence, the action of Hcoll is the same
as the action of H(iso)

coll
(H) for small t. ⌅.

Note that in the quantum metrology problems we con-
sider we always estimate the parameter t around t = 0

assuming that it is small. Hence, the approximate equal-
ity in Eq. (S29) is sufficient.

Observation S2.—Replacing the evolution by Hcoll

given in Eq. (S22) by the evolution by H
(iso)

coll
given in

Eq. (S25) does not decrease the metrological gain. Hence,
when looking for the Hamiltonian with the largest metro-
logical gain, it is sufficient to look for Hamiltonians of the
form (S25).

Proof. When the evolution by Hcoll given in Eq. (S22)
is replaced by the evolution by H

(iso)

coll
then the quantum

Fisher information does not change, while F (sep)

Q
does not

increase. The latter can be seen as follows. Let us define

f(X) = [�max(X)� �min(X)]
2, (S30)

where X is some matrix. Then, based on Eq. (24),
F

(sep)

Q
(Hcoll) = f(H1)+f(H2) holds. On the other hand,

we have F
(sep)

Q
(H

(iso)

coll
) = 2f(H). Knowing that f is ma-

trix convex, we obtain that

F
(sep)

Q
(H

(iso)

coll
)  F

(sep)

Q
(Hcoll). (S31)

⌅
We will now use that for a pure state mixed with white

noise it is possible to obtain a closed formula for the quan-
tum Fisher information for any operator A as a function
of p as [4]

FQ[%p, A] =
p2

p+ 2(1� p)d�2
4(�A)

2

 (me) , (S32)
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where %p given in Eq. (S21). Let us simplify Eq. (S32).
For the case of A = H

(iso)

coll
, we can rewrite the variance

as

(�H
(iso)

coll
)
2

 (me) = 2
Tr(H

2
)

d
+ 2hH⌦H

⇤
i (me) � 4

Tr(H)
2

d2
,

(S33)

where we used that for the reduced state of | (me)
i we

have ⇢red1 = ⇢red2 = 11/d. Next, we use the fact that

hH⌦H
⇤
i (me) =

1

d
Tr(H

2
) (S34)

holds. Hence, for the quantum Fisher information we
obtain

FQ[%p,H
(iso)

coll
] =

16p2

pd2 + 2(1� p)

⇥
dTr(H2

)� Tr(H)
2
⇤
.

(S35)
Based on Eq. (S35) and on Eq. (24), the metrological
gain for a given Hamiltonian H

(iso)

coll
is obtained as

g(%p,H
(iso)

coll
) =

16p2

pd2 + 2(1� p)
r(H), (S36)

where r(H) is defined as

r(H) =
[d
P

k h
2

k � (
P

k hk)
2
]

2(hmax � hmin)
2

, (S37)

and hk denote the eigenvalues of H.
Let us now consider the metrological gain for the

isotropic state for various Hamiltonians.
Observation S3.—Isotropic states have the best

metrological performance with respect to separable states
with the Hamiltonian given by

Hbest = diag(+1,�1,+1,�1, ...). (S38)

Based on Eq. (3), the corresponding quantum Fisher in-
formation is

g(%p,H
(iso)

coll
(Hbest)) =

2p2[d2 � ↵]

pd2 + 2(1� p)
, (S39)

where ↵ is defined as

↵ =

⇢
0 for even d,

1 for odd d.
(S40)

No other Hamiltonian H corresponds to a better perfor-
mance.

Equation (S39) is maximal for p = 1 and has the value

g(%p,H
(iso)

coll
(Hbest)) = 2

d2 � ↵

d2
, (S41)

which is 2 for even d and approaches 2 for large d for odd
d.

Proof. Without the loss of generality, let us set hmin =

�1 and hmax = +1. Then, the denominator of Eq. (S37)
is 8. Let us consider now the numerator. The maximum
of the numerator of Eq. (S37) will be clearly taken by
a configuration for which hk = ±1. The first term is d2.
Looking at the second term, we see that the numerator is
maximized by {hk}

d
k=1

= {+1,�1,+1,�1, ...}. We find
that the maximum is obtained for the Hamiltonian (S38).
⌅

Next, we determine which isotropic states are useful
metrologically.

Observation S4.—If

p > pm =
d2 � 2

4(d2 � ↵)
+

s
(d2 � 2)2

16(d2 � ↵)2
+

1

d2 � ↵
(S42)

holds then the isotropic state %p is useful for metrology
with the Hamiltonian (S38). Otherwise, the isotropic
state is not useful with any other Hamiltonian.

Proof. We look for the p for which the righ-hand side
of Eq. (S41) is 1. ⌅

Note that pm > 1/2 for all d while for large d it con-
verges to 1/2. On the other hand, the isotropic state given
in Eq. (S21) is entangled if p > 1/d. Hence, for all d � 2

there are isotropic states there are entangled but not use-
ful for metrology.

Let us now look for the Hamiltonian of the type (S25)
with which the isotropic states have the worst metrolog-
ical performance.

Observation S5.—Isotropic states have the worst
metrological performance with respect to separable states
with the Hamiltonian given by

Hworst = diag(1,�1, 0, 0, ..., 0). (S43)

The corresponding quantum Fisher information is

g(%p,H
(iso)

coll
(Hworst)) =

4p2d

pd2 + 2(1� p)
. (S44)

No other Hamiltonian H corresponds to a worst perfor-
mance.

Note that we considered collective Hamiltonians of the
type (S25). Other collective Hamiltonians Hcoll can lead
to a worse performace and can even have g(%p,Hcoll) = 0.
In particular, this is the case for Hamiltonians given in
Eq. (S24), where K can be any Hamiltonian.

The metrological gain given in Eq. (S44) is maximal
for p = 1 and has the value

g(%p,H
(iso)

coll
(Hworst)) =

4

d
. (S45)

If d � 4, then the right-hand side of Eq. (S45) is not
larger than one. Hence, with Hworst, no isotropic state
can be useful for d � 4. For d = 3, on the other hand the
right-hand side of Eq. (S45) is larger than one. Hence,
for d = 3, the maximally entangled state | 

(me)
i is useful
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with the Hamiltonian Hworst. We can also see that for
d = 3 the maximally entangled state | 

(me)
i is useful

with any Hamiltonian H
(iso)

coll
.

In Fig. S1, we plot the results of simple numerics for
d = 3, 4 and 5. The random mixed states have been gen-
erated according to Ref. [28].

METROLOGY WITH WERNER STATES

We now examine whether another type of bipartite
states with a rotational symmetry, i.e, Werner states de-
fined as [44]

%W(�) =
+ �V

d2 + �d
, (S46)

outperform separable states in metrology. Here �1 

�  +1 and V is the flip operator.
We will consider a general evolution of the type

Eq. (S22). Werner states are invariant under transfor-
mations of the type

U ⌦ U, (S47)

where U is a single-qudit unitary. Hence, Werner states
are invariant under the Hamiltonian

H
(W)

inv
(H) = J ⌦ + ⌦ J , (S48)

where J is a Hermitian operator.
Observation S6.—For short times, the action of the

Hamiltonian Hcoll given in Eq. (S22) is the same as the
action of

H
(W)

coll
(H) = H

(W)
⌦ � ⌦H

(W), (S49)

where the single party Hamiltonian H is defined as

H
(W)

= (H1 +H2)/2. (S50)

Proof. Let us define �(W) as

�
(W)

= (H2 �H1)/2. (S51)

In the rest of the section, we omit the superscript "W"
in H

(W)

inv
,H(W),�(W). Then, simple algebra shows that

Hcoll +H
(W)

inv

⇣
�

(W)

⌘
= H

(W)

coll
. (S52)

Hence, for small t

e�iHcollte�iHinv(�)t
⇡ e�iH(W)

coll
(H)t (S53)

holds. The Werner state is invariant under the action of
H

(W)

inv
(�), since the corresponding unitary is of the form

given in Eq. (S47). Hence, the action of Hcoll is the same
as the action of H(W)

coll
(H) for small t. ⌅.

0 0.2 0.4 0.6 0.8 1
0

0.5

1
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0 0.2 0.4 0.6 0.8 1
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1

1.5
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0 0.2 0.4 0.6 0.8 1
0
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1

1.5

FIG. S1. Metrology with isotropic states given in Eq. (S21)
for systems of size (top) 3⇥3, (middle) 4⇥4, and (bottom) 5⇥
5. The metrological gain g(%p,H

(iso)
coll ) is plotted for isotropic

states, (S21), of a given p. (dashed) Limit for separable states.
(blue dots) Metrological performance of isotropic states for
two-body Hamiltonians H

(iso)
coll (H) given in Eq. (S25), where

H are chosen randomly. (upper solid red line) Metrology with
the best Hamiltonian Hbest given in Eq. (S38). (lower solid
red line) Metrology with the worst Hamiltonian Hworst given
in Eq. (S43). (dotted) Line corresponding the bound pm given
in Eq. (S42). Isotropic states with a larger p are useful for
metrology.
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Observation S7.—Replacing the evolution by Hcoll

given in Eq. (S22) by the evolution by H
(W)

coll
given in

Eq. (S24) does not decrease the metrological gain. Hence,
when looking for the Hamiltonian with the largest metro-
logical gain, it is sufficient to look for Hamiltonians of the
form (S24).

Proof. The proof is similar to the proof of Observation
S2. ⌅

Werner states, given in Eq. (S46), can also be defined
as

%W(�) =
1 + �

d2 + �d
Ps +

1� �

d2 + �d
Pa, (S54)

where Ps and Pa are the projectors to the symmetric and
antisymmetric subspace, respectively. We will be inter-
ested in the case �  0. The quantum Fisher information
for Werner states for a Hermitian operator A is

FQ[%W, A] = 2
(�s � �as)2

�s + �as

⇥

0

@
X

k2S,l2A

|hk|A|li|2 +
X

k2A,l2S

|hk|A|li|2

1

A ,

(S55)

where k 2 S and l 2 A denote the indices of symmet-
ric and antisymmetric eigenstates, respectively. From
Eq. (S54), the eigenvalues of the Werner states can be
obtained, yielding

2
(�s � �as)2

�s + �as
=

4|�|2

d2 + �d
. (S56)

If the operator A is of the form given in Eq. (S24), then
for any symmetric states | si and antisymmetric states
| ai

h s|A| si = h a|A| ai = 0 (S57)

hold. Hence, we can return to sums over all eigenvectors
and write

FQ[%W,H(W)

coll
] =

4|�|2

d2 + �d

X

k,l

|hk|H(W)

coll
|li|2

=
8|�|2

d2 + �d
Tr((H(W)

coll
)
2
). (S58)

Then, we need that

Tr((H
(W)

coll
)
2
) = 2[dTr(H2

)� Tr(H)
2
]. (S59)

Hence, we obtain a general formula for the quantum
Fisher information for Werner states as

FQ[%W,H(W)

coll
(H)] =

8|�|2

d2 + �d
[dTr(H2

)�Tr(H)
2
]. (S60)

Based on Eq. (S60) and on Eq. (24), the metrological
performance is given by

g(%W,H(W)

coll
(H)) =

8|�|2

d2 + �d
r(H), (S61)

where r(H) is defined in Eq. (S37).
Let us now look for the Hamiltonian that provides the

largest metrological gain for Werner states.
Observation S8.—Werner states have the best

metrological performance with respect to separable states
with the Hamiltonian Hbest given in Eq. (S38). The cor-
responding quantum Fisher information is

g(%W,H(W)

coll
(Hbest)) =

|�|2(d2 � ↵)

d2 + �d
, (S62)

where the optimization is carried out over collective
Hamiltonians of the form (S24).

No other such collective Hamiltonian corresponds to
a better performance. Equation (S62) is maximal for
� = �1 and has the value

g(%W,H(W)

coll
(Hbest)) =

d+ ↵

d+ ↵� 1
, (S63)

which is close to 1 for large d.
Proof. The best H operator is the one for which r(H)

defined in Eq. (S37) is the largest. In other words, we
can look for the H for a constant (hmax � hmin)

2 that
maximizes [dTr(H2

) � Tr(H)
2
]. The details of the proof

are similar to the proof of Observation S3. ⌅
Next, we determine which Werner states are useful

metrologically.
Observation S9.—If

� < �m :=
d

2(d2 � ↵)
�

s
d2

4(d2 � ↵)2
+

d2

d2 � ↵
(S64)

holds, then the Werner state is useful for metrology with
the Hamiltonian (S38). Otherwise, the Werner state is
not useful with any other Hamiltonian.

Proof. We look for the � for which the right-hand side
of Eq. (S62) is 1. ⌅

Let us now look for the Hamiltonian of the type (S24)
with which the Werner states have the worst metrological
performance.

Note that for large d the parameter �m converges to
1, while Werner states are entangled if � < �1/d [44].
Hence, there are Werner states that are entangled but
not useful for metrology.

Observation S10.—Werner states have the worst
metrological performance with respect to separable states
with the Hamiltonian given in Eq. (S43). The corre-
sponding quantum Fisher information is

g(%W,H(W)

coll
(Hworst)) =

2|�|2d

d2 + �d
. (S65)



7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. S2. Metrology with Werner states given in Eq. (S46).
(top) 3⇥ 3, (middle) 4⇥ 4, and (bottom) 5⇥ 5 Werner states
are considered. The metrological gain g(%W(�),H(W)

coll ) is plot-
ted for Werner states of a given �. (dashed) Limit for sepa-
rable states. (blue dots) Metrological performance of Werner
states for two-body Hamiltonians H(W)

coll (H) given in Eq. (S24),
where H are chosen randomly. (upper solid red line) Metrol-
ogy with the best Hamiltonian Hbest given in Eq. (S38).
(lower solid red line) Metrology with the worst Hamiltonian
Hworst given in Eq. (S43). (dotted) Line corresponding the
bound �m given in Eq. (S64). Werner states with �� > ��m

are useful for metrology.

No other Hamiltonian corresponds to a worst perfor-
mance.

Proof. This can be seen noting that Eq. (S61) is mini-
mized for this case. ⌅

Note that we considered Hamiltonians H
(W)

coll
(H) of

the type (S24). Other collective Hamiltonians Hcoll

can lead to a worse performace and can even reach to
g(%W,Hcoll) = 0. In particular, this is the case for collec-
tive Hamiltonian of the form given in Eq. (S24).

Equation (S65) is maximal for � = �1 and has the
value

g(%W,H(W)

coll
(Hworst)) =

2

d� 1
. (S66)

We can see that for d � 3 the right-hand side of Eq. (S66)
is not larger than one, hence the Werner state is not
useful with the Hamiltonian Hworst. We can also see that
the metrological gain, (S66), is close to 0 for large d.

In Fig. S2, we plot the results of simple numerics for
d = 3, 4 and 5. The random mixed states have been gen-
erated according to Ref. [28].

CONCRETE EXAMPLE WITH TWO-QUBIT
SINGLETS

In this Section, we work out in detail the problem
of metrology with two-qubit singlets and ancillas. This
problem is also interesting, since the Hamiltonians ob-
tained numerically are very simple.

Let us consider the noisy two-qubit singlet

%(p)
AB

= (1� p)| �
ih 

�
|+ p11/4, (S67)

where

| 
�
i =

1
p
2
(|01i � |10i). (S68)

The state given in Eq. (S67) is a Werner-state given in
Eq. (S46) and it is also equivalent to an isotropic state,
(S21), under local unitaries. The state is more useful
than separable states if the noise is smaller than

plimit =
1

8
(7�

p

17) ⇡ 0.3596, (S69)

see Eq. (S42) for isotropic states. The optimal local
Hamiltonian is

H1 singlet = ZA � ZB, (S70)

where Z is the Pauli spin matrix diag(�1,+1). Even for
a pure singlet, this is the optimal Hamiltonian.

Let us consider two singlets with a bipartition AA’|BB’

%2 singlets = %(p)
AB

⌦ %(p)
A0B0 . (S71)

Then, the optimal Hamiltonian is

H2 singlets = ZAZA0 + ZBZB0 . (S72)
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Finally, let us consider a singlet in AB and two ancillas
in some pure state in A’B’

%(p)
AB

⌦ | A0ih A0 |⌦ | B0ih B0 |. (S73)

In this case, if p < plimit then the optimal Hamiltonian
is Eq. (S70). That is, the ancillas do not give any advan-
tage, the Hamiltonian does not act on the ancillas. If the
singlet is too noisy, that is, p > plimit then the optimal
local Hamiltonian is of the form

HA0 +HB0 . (S74)

Note that Eq. (S74) acts only on the ancillas.
If we use pure singlets then in all these cases we have

FQ = 16, while the limit for separable states is F
(sep)

Q
=

8. If we use singlets with p given in Eq. (S69), then

FQ[%2 singlets,H2 singlets] = 8.1530. (S75)

Thus, the state outperfoms separable states. In the case
of a single copy, and a single copy with two pure ancillas,
FQ = F

(sep)

Q
= 8. On the other hand, the state %2 singlets

remains more useful than separable states if

p < 0.3675, (S76)

where the limit on the noise fraction has been obtained
numerically.

Thus, in the 2 ⇥ 2 case, a singlet mixed with white
noise cannot be activated by ancillas. This is also true
for isotropic states, since they are locally equivalent to a
singlet mixed with white noise.

Finally, we show that if a singlet is mixed with non-
white noise, then it can be activated with ancillas. Let
us consider the state

1

2

�
| 

�
ih 

�
|+ |00ih00|

�
. (S77)

For this state, the optimization over Hamiltonians lead
to FQ = 8, which is also the bound for separable states,
i.e., F (sep)

Q
= 8. With two ancillas we can reach FQ = 9.

With two singlets, we can reach FQ = 10. In all these
cases, we could use c1 = c2 = 1 when searching for the
optimal Hamiltonian due to the symmetries of the setup.
[See Eq. (20) for the definition of ck.] The state given
in Eq. (S77) can be activated even with a single ancilla.
By setting c1 = c2 = 1, we get FQ = 8.4. On the other
hand, the optimal Hamiltonian has c1 = 1 and c2 =

(1+
p
5)/2 ⇡ 1.618 and and the gain reaches FQ/F

(sep)

Q
=

3(5 +
p
5)/20 ⇡ 1.0854.

We considered various multiqubit states in this section.
In an application, we have to choose one of them. The
basic idea is the following. If the metrological gain of an
entangled quantum state is not larger than 1, i.e., g  1,
then it is better to use product states since they can
reach the same precision, but it is easier to create them.

Moreover, if we find that an entangled state is more useful
than separable states, i.e., g > 1, then our algorithm can
also tell us the optimal Hamiltonian corresponding to the
task where they outperform separable states the most.

ESTIMATION OF THE METROLOGICAL GAIN
FOR GENERAL QUANTUM STATES

Recently, there have been several methods presented
to find lower bounds on the quantum Fisher information
based on few operator expectation values [2, 27]. Our
results on isotropic states and Werner states can be used
to construct lower bounds for the metrological gain g
based on a single operator expectation value.

In order to proceed, we note that any d ⇥ d state can
be depolarized into an isotropic state given in Eq. (S21)
with the U ⌦ U⇤ twirling operation as

%iso(F ) =

Z
M(dU)(U ⌦ U⇤

)%(U†
⌦ U⇤†

), (S78)

where M is a unitarily invariant probability measure.
The state %iso(F ) is just the isotropic state given in
Eq. (S21), defined with a different parametrization as

%iso(F ) = F | 
(me)

ih 
(me)

|+ (1� F )
11 � | 

(me)
ih 

(me)
|

d2 � 1
,

(S79)
where the maximally entangled state | 

(me)
i is given in

Eq. (7), and

F = Tr(%| (me)
ih 

(me)
|) (S80)

is the entanglement fraction of the state %, which is al-
ternatively called the singlet fraction [42, 43]. Based on
Eq. (S39), the maximum metrological performance of the
isotropic state is given by

g(%iso(F )) =
2(d2 � ↵)(d2F � 1)

2

d2(d2 � 1)(1� 2F + d2F )
, (S81)

where ↵ is zero for even d, and one otherwise. Here, we
remember that the metrological gain is defined in Eq. (6).

Next, we show that g(%) cannot increase under twirling
defined in Eq. (S78), i.e.,

g(%) � g(%iso(F )). (S82)

We use a series of inequalities

FQ[⇢p,H] = FQ

Z
M(dU)(U ⌦ U⇤

)%(U†
⌦ U⇤†

),H

�



Z
M(dU)FQ[(U ⌦ U⇤

)%(U†
⌦ U⇤†

),H]

 FQ[(U0 ⌦ U⇤

0
)%(U †

0
⌦ U⇤†

0
),H]

= FQ[%,H
0
], (S83)
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where H0
= (U †

0
⌦U⇤†

0
)H(U0⌦U⇤

0
) and U0 is some unitary.

To arrive at the second line we used the property of the
quantum Fisher information that it is convex in the state,
Noting also that the eigenvalues of H

0 are the same as
that of H, and that F

(sep)

Q
(H) in Eq. (24) depends only

on the eigenvalues, we arrive at Eq. (S82).
Based on Eq. (S82), the metrological gain of any quan-

tum state can be bounded from below as

g(%) � g(%iso(F )), (S84)

where g(%iso(F )) is defined in Eq. (S81) and F is just the
entanglement fraction of %. Based on Eq. (S80), F equals
the expectation value of the projector to | 

(me)
i. Hence,

our lower bound is based on a single operator expectation
value.

Similar calculations can be carried out for Werner
states, using the fact that any quantum state can be de-
polarized into a Werner state using the U ⌦ U twirling

%W(�) =

Z
M(dU)(U ⌦ U)%(U †

⌦ U †
). (S85)

Then, we can construct a lower bound

g(%) � g(%W(�)), (S86)

where the Eq. (S62) gives the right-hand side of Eq. (S86)
as a function of the parameter �. The quantity � is related
to the expectation value of the flip operator V as

hV i =
1 + d�

d+ �
. (S87)

UNITING QUDITS

In most of the paper, we considered bipartite examples.
In the multipartite case, the usefulness of a quantum
state is always relative to the partitioning of the parties.
From this point of view, it is worth to look at metro-
logical usefulness of a multipartite state when we put the
parties into two groups, and return to the bipartite prob-
lem. For instance, the four-qubit ring cluster state is not
useful, FQ/F

(sep)

Q
= 1 [12]. After uniting two qubits into

a ququart it becomes useful, with FQ/F
(sep)

Q
= 2. An

optimal Hamiltonian with an optimal gain is

j(1)z ⌦ j(2)y + j(3)y ⌦ j(4)z . (S88)

We have to measure M = j(1)z ⌦ j(2)x ⌦ j(3)x ⌦ j(4)z for
an optimal estimation precision (�✓)2M = 1/16. Due to
the commutator relations [j(n)z ,M ] = [j(n)z ,H] = 0 for
n = 1, 4, we can realize the following scheme. We mea-
sure jz on qubits (1) and (4) such that we have a state lo-
cally equivalent to a singlet on qubits (2) and (3). Then,
we do metrology with qubits (2) and (3). Similar schemes
based on preselection have appeared in the theory of en-
tanglement and nonlocality [29, 30].

(a) (b)

(c) (d)

FIG. S3. Distribution of the metrological gain optimized over
local Hamiltonians. Results for random states with dimension
3⇥3 for (a) pure and (b) mixed states. (c) and (d) The same
for the Hamiltonian given in Eq. (8). (dashed vertical line)
Line corresponding to g = 1. States are metrologically useful
if g > 1.

HOW LARGE PART OF QUANTUM STATES
ARE USEFUL

The scaling of the quantum Fisher information with
the dimension has been considered for random states and
for the best local Hamiltonian in Ref. [31]. We used our
optimization algorithm to determine the distribution of
the quantum Fisher information and obtain exactly how
large part of pure or mixed quantum states are useful.
The random pure states and mixed states have been gen-
erated according to Ref. [28]. For d = 3, the results are
shown in Fig. S3. It suggests that almost no random
mixed states are useful. Pure states are useful almost
with a maximal usefulness.

INFINITE NUMBER OF COPIES OF
ARBITRARY PURE STATES

It is shown that an infinite number of copies of any en-
tangled pure quantum state of Schmidt rank-s with s > 1

is maximally useful metrologically. To this end, let us de-
fine a pure state in the Schmidt basis with Schmidt rank-s
as in Eq. (26). Here, the real non-negative �k Schmidt
coefficients are in a descending order, and

Ps
k=1

�2

k = 1.
In addition, we also assume that �1 > �2.

Then, the n-copy state has the Schmidt coefficients

�i1�i2 · · · �in , (S89)

where ik 2 {1, 2, . . . , s}. The number of equal Schmidt
coefficients in the n-copy state follows a multinomial dis-
tribution formula. With this and Eq. (30), we obtain the
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lower bound

FQ[| i
⌦n,Hn�copy] �

8

nX

k1+k2+...+ks=n

�
1

2

✓
n

k1, k2, . . . , ks

◆⌫
(2�k1

1
�k2

2
· · · �ks

s )
2,

(S90)

where

Hn�copy =

 
nO

k=1

HA,k

!
⌦

 
nO

k=1

11B,k

!
+

 
nO

k=1

11A,k

!
⌦

 
nO

k=1

HB,k

!
. (S91)

Here HA,k = HB,k are all equal to the operator given in
in Eq. (27). HA,k and HB,k act on the kth copy of system,
on subsystem A and B, respectively. The meaning of 11A,k

and 11B,k is analogous. The expression bxc is the floor or
integer part of x, and the multinomial coefficients are

✓
n

k1, k2, . . . , ks

◆
=

n!

k1!k2! · · · ks!
. (S92)

Using the multinomial theorem for
�P

k �
2

k

�n
= 1 and

the relation
�
1

2

✓
n

k

◆⌫
�

�n
k

�
� 1

2
, (S93)

yield a further lower bound

FQ[| i
⌦n,Hn�copy]

� 16

X

k1+k2+...+ks=n

✓
n

k1, k2, . . . , ks

◆
� 1

�
�2k1

1
�2k2

2
· · · �2ks

s

= 16� 16

X

k1+k2+...+ks=n

�2k1

1
�2k2

2
· · · �2ks

s . (S94)

Now we show that for Schmidt rank s > 1 and in the
limit of large n the last sum tends to zero, hence in case
of many copies n we get FQ[| i⌦n,Hn�copy] ! 16. To
this end we set k1 = n � k in the last sum above to get
the following series of relations:

X

k1+k2+...+ks=n

�2k1

1
�2k2

2
· · · �2ks

s

=

nX

k=0

 
X

k2+...+ks=k

�2(n�k)
1

�2k2

2
· · · �2ks

s

!

= �2n
1

nX

k=0

 
X

k2+...+ks=k

��2k
1

�2k2

2
· · · �2ks

s

!

 �2n
1

nX

k=0

✓
�2
�1

◆2k X

k2+...+ks=k

1, (S95)

where the inequality above is due to our assumption �2 �

�k, in the case of k > 2. Let us now observe that this last

upper bound goes to zero in the case of fixed s and n goes
to infinity. This comes from the facts that in that case
�2n
1

goes to zero, and that
P

k2+...+ks=k 1 is a polynomial
function of s, hence owing to the Cauchy ratio test the
series

nX

k=0

✓
�2
�1

◆2k X

k2+...+ks=k

1 (S96)

converges absolutely. ⌅

MAXIMAL METROLOGICAL GAIN

In this section, we consider the multiparticle case. For
this case, the metrological gain can be define analogously
to the bipartite case. We determine the quantum states
with a maximum metrological gain.

Let us consider the high-dimensional Greenberger-
Horne-Zeilinger (GHZ) state [32, 33]

|GHZi =
1

p
m

mX

n=1

|ni⌦N , (S97)

where N is the number of particles, d is the dimension of
their state space, and m  d is the number of the terms
in the superposition. We require that m is even. Then,
the achievable largest metrological gain

g(|GHZi) = N (S98)

is obtained for the state (S97). Thus, the maximal gain
does not increase with the particle dimension d and de-
pends only on the number of particles. In particular, for
two particles, the maximal gain is 2.

An optimal Hamiltonian with which the maximal gain
can be achieved with the GHZ state given in Eq. (S97)
is of the form

Hopt =

NX

n=1

11⌦(n�1)
⌦D0

⌦ 11⌦(N�n�1), (S99)

where 11⌦0
= 1, and the single particle Hamiltonian is

defined as

D0
=

X

n=1,3,5,...,m�1

|nihn|� |n+ 1ihn+ 1|. (S100)

Note that for even d and for m = d, the matrix D0 equals
the matrix D defined in Eq. (9).

In summary, for a given N and d, several of the GHZ
states and Hamiltonians Hopt give the maximum metro-
logical gain compared to separable states. Note, however,
that this does not mean that FQ[|GHZi,Hopt] is maxi-
mal in all these cases for a given N and d. It just means
that FQ[|GHZi,Hopt] is the largest possible compared
to what is achievable by separable states with the same
Hamiltonian Hopt.
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ALTERNATIVE OPTIMIZATION METHOD

We present a simple alternative of the two-step itera-
tive optimization method of the paper. We use the fol-
lowing finding proved in the main text. If we determine
the optimal H for a given M using Observation 2, the
eigenvalues of the optimal Hn satisfying Eq. (20) are ±cn.
We assume that Hn is of the form (21). We set D̃n =

cndiag(+1,+1, ...,+1,�1,�1, ...,�1) and then vary Un

in order to get the maximal FQ(%,H1 ⌦ + ⌦H2).

ROBUSTNESS OF METROLOGICAL
USEFULNESS

We define the quantum metrological robustness,
pm(%, %noise), where % is some quantum state and %noise a
state representing noise. We call pm is the largest noise
fraction p for which the noisy state

%p = p%noise + (1� p)% (S101)

have g(%p) � 1 [11]. The bound in Eq. (11) for noisy
maximally entangled states can be formulated for d = 3

as

pm( 
(me), 11/d2) =

25�
p
177

32
⇡ 0.3655. (S102)

In practice, the noise state can be the white noise and
%noise / 11. We can also consider an optimization

min
%noise2Snoise

pm(%, %noise), (S103)

which gives the noise tolerance against certain types of
noise defined by the set Snoise. For instance, the Snoise

can contain all states that are metrologically note useful,
i.e., for which g  1.

We can choose another type or parametrization usual
in entanglement theory. Given a state % and a metro-
logically useless state %noise, we can call metrological ro-
bustness of % relative to %noise, the minimal s � 0 for
which

Rm(%||%noise) =
1

1 + s
(%+ s%noise) (S104)

is useless for metrology.
The robustness can be obtained with a numerical

search for the noise fraction for which g = 1. We used
a search based on interval halving. That is, we start
with an interval given by two noise fractions values pL
and pH such that g(%pL

)  1  g(%pH
). We test the noise

fraction corresponding to the center of the interval. De-
pending on whether for that noise value g � 1 or g < 1,
we reset the lower or the upper boundary of the interval
to the center. We repeat this procedure until the size of

the interval is sufficiently small. We used a similar proce-
dure to obtain the noise bounds for states with an extra
ancilla and two copies of noise states.

We note that there are general relations between the
gain-like and robustness-like quantities, that might be
used in our case [22, 34].

WITNESSING DIMENSION

We can use our approach to witness the dimension of
the quantum system [46–49], or in general, the type of the
interaction that is present. For instance, we can consider
the two-qubit singlet state mixed with p = 0.3596 white
noise, see Eq. (S69). Such a state is not more useful than
separable states, under any Hamiltonian. Thus,

max
localH

FQ[%,H]  F
(sep)

Q
. (S105)

If we find that the quantum state is more useful than
separable states then it must be connected to an ancilla
or a second copy or activated by another quantum state.

Next, we show how to obtain the bound for product
states by measurement. We have to create random pure
product states %. Then, we can use that [18–21]

FQ[%,H] = 1� F (%, %t)t
2/2 +O(t3), (S106)

where O(t3) respresents terms that are at least third or-
der in t, F (%, %t) is the fidelity between the initial state
% and the evolved state is

%t = e�iHt%e+iHt. (S107)

Thus, for a short time evolution, i.e., for small t we have

FQ[%,H] ⇡ 1� F (%, %t)t
2/2. (S108)

Since both of these states are pure product states and
we know %, we can measure the fidelity, and use it to
measure FQ. We can even look for the product state that
maximizes FQ[%,H] by some search algorithm.

We can also test whether the metrological performance
is consistent with some particular interaction. We can
compute the maximum for Hamiltonians of the form

HaHA +HB . (S109)

If the metrological performance is better than this max-
imum, then the form must be different, i.e., there might
be two interaction terms between subsystem A and the
ancilla "a".

HaHA +H
0

aH
0

A +HB . (S110)

Using ideas similar to the ones in our paper, with our
method we can even look for the maximum for such
Hamiltonians. If the metrological performance is bet-
ter than this maximum, the intaction between A and a
must contain at least three terms.


