Spin squeezing and entanglement

Géza Tóth ${ }^{1,2,3}$, Christian Knapp ${ }^{4}$, Otfried Gühne ${ }^{4,5}$, and Hans J. Briegel ${ }^{4,5}$

${ }^{1}$ Theoretical Physics, The University of the Basque Country, Bilbao, Spain
${ }^{2}$ Ikerbasque - Basque Foundation for Science, Bilbao, Spain
${ }^{3}$ Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest
${ }^{4}$ Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck
${ }^{5}$ Institute for Theoretical Physics, University of Innsbruck, Innsbruck

Mini workshop, MTA SZTAKI, Budapest, 12 December, 2008

Outline

(1) Motivation
(2) Entanglement detection with collective observables
(3) Optimal spin squeezing inequalities
(4) Multipartite bound entanglement in spin models

Outline

(1) Motivation
(2) Entanglement detection with collective observables
(3) Optimal spin squeezing inequalities
(4) Multipartite bound entanglement in spin models

Motivation

- In many quantum control experiments the qubits cannot be individually accessed. We still would like to detect entanglement.
- The spin squeezing criterion is already known. Are there other similar criteria that detect entanglement with the first and second moments of collective observables?

Outline

(1) Motivation
(2) Entanglement detection with collective observables
(3) Optimal spin squeezing inequalities
(4) Multipartite bound entanglement in spin models

From squeezing to spin squeezing

- The variances of the two quadrature components are bounded

$$
(\Delta x)^{2}(\Delta p)^{2} \geq \text { const }
$$

- Coherent states saturate the inequality.
- Squeezed states are the states for which one of the quadrature components have a smaller variance than for a coherent state.

- Can one use similar ideas for spin systems?

Spin squeezing

Definition

The variances of the angular momentum components are bounded

$$
\left(\Delta J_{x}\right)^{2}\left(\Delta J_{y}\right)^{2} \geq \frac{1}{4}\left|\left\langle J_{z}\right\rangle\right|^{2}
$$

where the mean spin points into the z direction. If $\left(\Delta J_{x}\right)^{2}$ is smaller than the standard quantum limit $\frac{\mid\left\langle J_{z}\right\rangle}{2}$ then the state is called spin squeezed.

- In practice this means that the angular momentum of the state has a small variance in one direction, while in an orthogonal direction the angular momentum is large.
[M. Kitagawa and M. Ueda, PRA 47, 5138 (1993).]

Definition: Entanglement

Definition

Fully separable states are states that can be written in the form

$$
\rho=\sum_{l} p_{I} \rho_{l}^{(1)} \otimes \rho_{l}^{(2)} \otimes \ldots \otimes \rho_{l}^{(N)}
$$

where $\sum_{l} p_{l}=1$ and $p_{l}>0$.

Definition

A state is entangled if it is not separable.

- Note that one could also look for other type of entanglement in many-particle systems, e.g., entanglement in the two-qubit reduced density matrix.

Definition: Collective quantities

- What if we cannot address the particles individually? This is expected to occur often in future experiments.
- For spin- $\frac{1}{2}$ particles, we can measure the collective angular momentum operators:

$$
J_{l}:=\frac{1}{2} \sum_{k=1}^{N} \sigma_{l}^{(k)},
$$

where $I=x, y, z$ and $\sigma_{I}^{(k)}$ a Pauli spin matrices. We can also measure the $\left(\Delta J_{l}\right)^{2}:=\left\langle J_{l}^{2}\right\rangle-\left\langle J_{l}\right\rangle^{2}$ variances.

The standard spin-squeezing criterion

Definition

The spin squeezing criterion for entanglement detection is

$$
\frac{\left(\Delta J_{x}\right)^{2}}{\left\langle J_{y}\right\rangle^{2}+\left\langle J_{z}\right\rangle^{2}} \geq \frac{1}{N}
$$

If it is violated then the state is entangled.
[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

- States violating it are like this:

Variance of J_{x} is small

Generalized spin squeezing entanglement criteria I

Separable states must fulfill

$$
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2} \geq \frac{N}{2}
$$

It is maximally violated by a many-body singlet, e.g., the ground state of an anti-ferromagnetic Heisenberg chain.
[GT, PRA 69, 052327 (2004).]

- For such a state

$$
\left\langle J_{k}^{m}\right\rangle=0 .
$$

- Note that there are very many states giving zero for the left hand side. The mixture of all such states also maximally violates the criterion.
- Note that a similar inequality works also for a lattice of spins larger than $\frac{1}{2}$. [GT, PRA 69,052327 (2004)]]

Generalized spin squeezing entanglement criteria II

For states with a separable two-qubit density matrix

$$
\left(\left\langle J_{k}^{2}\right\rangle+\left\langle J_{l}^{2}\right\rangle-\frac{N}{2}\right)^{2}+(N-1)^{2}\left\langle J_{m}\right\rangle^{2} \leq\left\langle J_{m}^{2}\right\rangle+\frac{N(N-2)}{4}
$$

holds.
[J. Korbicz, I. Cirac, M. Lewenstein, PRL 95, 120502 (2005).]

- Detects all symmetric two-qubit entangled states; can be used to detect symmetric Dicke states.
- Used in ion trap experiment. [J. Korbicz, O. Gühne, M. Lewenstein, H. Häffner, C.F. Roos, R. Blatt, PRA 74, 052319 (2005).]

Generalized spin squeezing entanglement criteria III

For separable states

$$
\left\langle J_{x}^{2}\right\rangle+\left\langle J_{y}^{2}\right\rangle \leq \frac{N(N+1)}{4}
$$

holds. [GT, J. Opt. Soc. Am. B 24,275 (2007).]

- This can be used to detect entanglement close to N-qubit symmetric Dicke states with $\frac{N}{2}$ excitations. For such a state

$$
\begin{aligned}
\left\langle J_{k}\right\rangle & =0 \\
\left\langle J_{z}^{2}\right\rangle & =0 \\
\left\langle J_{x / y}^{2}\right\rangle & =\frac{N(N+2)}{8} .
\end{aligned}
$$

- For $N=4$, this state looks like

$$
|\Psi\rangle=\frac{1}{\sqrt{6}}(|1100\rangle+|1010\rangle+|1001\rangle+|0110\rangle+|0101\rangle+|0011\rangle)
$$

This was realized with photons.

Outline

(1) Motivation
(2) Entanglement detection with collective observables
(3) Optimal spin squeezing inequalities
(4) Multipartite bound entanglement in spin models

Optimal spin squeezing inequalities

- Let us assume that for a system we know only

$$
\begin{aligned}
\mathbf{J}: & =\left(\left\langle J_{x}\right\rangle,\left\langle J_{y}\right\rangle,\left\langle J_{z}\right\rangle\right), \\
\mathbf{K}: & =\left(\left\langle J_{x}^{2}\right\rangle,\left\langle J_{y}^{2}\right\rangle,\left\langle J_{z}^{2}\right\rangle\right) .
\end{aligned}
$$

where k, I, m take all the possible permutations of x, y, z.

Definition (Optimal spin squeezing inequalities)

Any state violating the following inequalities is entangled

$$
\begin{aligned}
\left\langle J_{x}^{2}\right\rangle+\left\langle J_{y}^{2}\right\rangle+\left\langle J_{z}^{2}\right\rangle & \leq \frac{N(N+2)}{4} \\
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2} & \geq \frac{N}{2} \\
\left\langle J_{k}^{2}\right\rangle+\left\langle J_{l}^{2}\right\rangle & \leq(N-1)\left(\Delta J_{m}\right)^{2}+\frac{N}{2} \\
(N-1)\left[\left(\Delta J_{k}\right)^{2}+\left(\Delta J_{l}\right)^{2}\right] & \geq\left\langle J_{m}^{2}\right\rangle+\frac{N(N-2)}{4}
\end{aligned}
$$

[GT, C. Knapp, O. Gühne, és H.J. Briegel, PRL 99, 250405 (2007); quant-ph/0702219.]

Derivation of the equations

- Criterion 2

$$
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2} \geq \frac{N}{2}
$$

Proof: For product states

$$
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2}=\sum_{k}\left(\Delta j_{x}^{(k)}\right)^{2}+\left(\Delta j_{y}^{(k)}\right)^{2}+\left(\Delta j_{z}^{(k)}\right)^{2} \geq \frac{N}{2} .
$$

It is also true for separable states due to the convexity of separable states.

Derivation of the equations

- Criterion 2

$$
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2} \geq \frac{N}{2}
$$

Proof: For product states

$$
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2}=\sum_{k}\left(\Delta j_{x}^{(k)}\right)^{2}+\left(\Delta j_{y}^{(k)}\right)^{2}+\left(\Delta j_{z}^{(k)}\right)^{2} \geq \frac{N}{2}
$$

It is also true for separable states due to the convexity of separable states.

- Criterion 3

$$
\left\langle J_{k}^{2}\right\rangle+\left\langle J_{l}^{2}\right\rangle \leq(N-1)\left(\Delta J_{m}\right)^{2}+\frac{N}{2},
$$

Proof: For product states

$$
\begin{aligned}
& (N-1)\left(\Delta J_{x}\right)^{2}+\frac{N}{2}-\left\langle J_{y}^{2}\right\rangle-\left\langle J_{z}^{2}\right\rangle=(N-1)\left(\frac{N}{4}-\frac{1}{4} \sum_{k} x_{k}^{2}\right) \\
& -\frac{1}{4} \sum_{k \neq 1} y_{k} y_{l}+z_{k} z_{l}=\ldots \geq 0 .
\end{aligned}
$$

Here $x_{k}=\left\langle\sigma_{x}^{(k)}\right\rangle$ and we have to use $\left(\sum_{k} s_{k}\right)^{2} \leq N \sum_{k} s_{k}$.

The polytope

- The previous inequalities, for fixed $\left\langle J_{x / y / z}\right\rangle$, describe a polytope in the $\left\langle J_{x / y / z}^{2}\right\rangle$ space. The polytope has six extreme points: $A_{x / y / z}$ and $B_{x / y / z}$.
- For $\langle\mathbf{J}\rangle=0$ and $N=6$ the polytope is the following:

The polytope II: Numerics

- Random separable states:

The polytope III: Extreme points

The coordinates of the extreme points are

$$
\begin{aligned}
A_{x} & :=\left[\frac{N^{2}}{4}-\kappa\left(\left\langle J_{y}\right\rangle^{2}+\left\langle J_{z}\right\rangle^{2}\right), \frac{N}{4}+\kappa\left\langle J_{y}\right\rangle^{2}, \frac{N}{4}+\kappa\left\langle J_{z}\right\rangle^{2}\right], \\
B_{x} & :=\left[\left\langle J_{x}\right\rangle^{2}+\frac{\left\langle J_{y}\right\rangle^{2}+\left\langle J_{z}\right\rangle^{2}}{N}, \frac{N}{4}+\kappa\left\langle J_{y}\right\rangle^{2}, \frac{N}{4}+\kappa\left\langle J_{z}\right\rangle^{2}\right],
\end{aligned}
$$

where $\kappa:=(N-1) / N$. The points $A_{y / z}$ and $B_{y / z}$ can be obtained from these by permuting the coordinates.

- Now it is easy to prove that an inequality is a necessary condition for separability: All the six points must satisfy it.

The polytope IV: Separable states fill the polytope

- Let us take the $\langle\mathbf{J}\rangle=0$ case first.
- Then the state corresponding to A_{x} is the equal mixture of

$$
|+1,+1,+1,+1, \ldots\rangle_{x}
$$

and

$$
|-1,-1,-1,-1, \ldots\rangle_{x} .
$$

- The state corresponding to B_{x} is

$$
|+1\rangle_{X}^{\otimes \frac{N}{2}} \otimes|-1\rangle_{X}^{\otimes \frac{N}{2}}
$$

- Separable states corresponding to $A_{y / z}$ and $B_{y / z}$ are defined similarly.

The polytope V

- General case: $\langle\mathbf{J}\rangle \neq 0$.
- A separable state corresponding to A_{x} is

$$
\rho_{A_{x}}=p\left(\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|\right)^{\otimes N}+(1-p)\left(\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|\right)^{\otimes N} .
$$

Here $\left|\psi_{+/-}\right\rangle$are the single qubit states with Bloch vector coordinates $\left(\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{y}\right\rangle,\left\langle\sigma_{z}\right\rangle\right)=\left(\pm c_{x}, 2\left\langle J_{y}\right\rangle / N, 2\left\langle J_{z}\right\rangle / N\right)$ where
$c_{x}:=\sqrt{1-4\left(\left\langle J_{y}\right\rangle^{2}+\left\langle J_{z}\right\rangle^{2}\right) / N^{2}}$. The mixing ratio is defined as $p:=1 / 2+\left\langle J_{x}\right\rangle /\left(N c_{x}\right)$.

The polytope V

- General case: $\langle\mathbf{J}\rangle \neq 0$.
- A separable state corresponding to A_{x} is

$$
\rho_{A_{x}}=p\left(\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|\right)^{\otimes N}+(1-p)\left(\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|\right)^{\otimes N} .
$$

Here $\left|\psi_{+/-}\right\rangle$are the single qubit states with Bloch vector coordinates $\left(\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{y}\right\rangle,\left\langle\sigma_{z}\right\rangle\right)=\left(\pm c_{x}, 2\left\langle J_{y}\right\rangle / N, 2\left\langle J_{z}\right\rangle / N\right)$ where
$c_{x}:=\sqrt{1-4\left(\left\langle J_{y}\right\rangle^{2}+\left\langle J_{z}\right\rangle^{2}\right) / N^{2}}$. The mixing ratio is defined as $p:=1 / 2+\left\langle J_{x}\right\rangle /\left(N c_{x}\right)$.

- If $N_{1}:=N p$ is an integer, we can also define the state corresponding to the point B_{X} as

$$
\left|\phi_{B_{x}}\right\rangle=\left|\psi_{+}\right\rangle^{\otimes N_{1}} \otimes\left|\psi_{-}\right\rangle^{\otimes\left(N-N_{1}\right)}
$$

If N_{1} is not an integer then one can find a point B_{x}^{\prime} such that such that its distance from B_{X} is smaller than $\frac{1}{4}$.

In what sense is the characterization complete?

- For any value of \mathbf{J} there are separable states corresponding to $A_{x / y / z}$.
- For certain values of \mathbf{J} and N (e.g., $\mathbf{J}=0$ and even N) there are separable states corresponding to points $B_{x / y / z}$.
- However, there are always separable states corresponding to points $B_{x / y / z}^{\prime}$ such that their distance from $B_{x / y / z}$ is smaller than $\frac{1}{4}$.
- In the limit $N \rightarrow \infty$ for a fixed normalized angular momentum $\frac{\mathrm{J}}{\mathrm{N} / 2}$ the sides of the polytope grow as N^{2}.
- The relative difference between the volume of our polytope and the volume of set of points corresponding to separable states decreases with N as N^{-2}, hence in the macroscopic limit the characterization is complete.

Polytope for various values for J

- The polytope for $N=10$ and

$$
J=(0,0,0), \quad J=(0,0,2.5)
$$

Our inequalities vs. the standard spin squeezing criterion

The standard spin squeezing criterion

$$
\frac{\left(\Delta J_{z}\right)^{2}}{\left\langle J_{x}\right\rangle^{2}+\left\langle J_{y}\right\rangle^{2}} \geq \frac{1}{N}
$$

is satisfied by all points A_{k} and B_{k}, for B_{z} even equality holds.

- Polytope for $N=10$ and $J=(1.5,0,2.5)$. States that are detected by the standard criterion are below the red plane.

Our inequalities vs. the Korbicz-Cirac-Lewenstein inequalities

For states with a separable two-qubit density matrix

$$
\left(\left\langle J_{k}^{2}\right\rangle+\left\langle J_{l}^{2}\right\rangle-\frac{N}{2}\right)^{2}+(N-1)^{2}\left\langle J_{m}\right\rangle^{2} \leq\left\langle J_{m}^{2}\right\rangle+\frac{N(N-2)}{4}
$$

holds. [J. Korbicz et al. PRL 95, 120502 (2005).]

- Polytope for $N=10$ and $J=(0,0,0)$. States that are detected by the KCL criterion are below the plane. The plane contains two of the three A_{k} points.

Correlation matrix

- Our inequalities can be reexpressed with the correlation matrix.
- Basic definitions:

$$
\begin{aligned}
C_{k l} & :=\frac{1}{2}\left\langle J_{k} J_{l}+J_{l} J_{k}\right\rangle, \\
\gamma_{k l} & :=C_{k l}-\left\langle J_{k}\right\rangle\left\langle J_{l}\right\rangle .
\end{aligned}
$$

- With them we define the interesting quantity

$$
\mathfrak{X}:=(N-1) \gamma+C .
$$

Correlation matrix II

- Now we can rewrite our inequalities as

$$
\begin{aligned}
\operatorname{Tr}(\mathfrak{X}) & \leq \frac{N^{2}(N+2)}{4}-(N-1)|\mathbf{J}|^{2} \\
\operatorname{Tr}(\mathfrak{X}) & \geq \frac{N^{2}}{2}+|\mathbf{J}|^{2} \\
\lambda_{\min }(\mathfrak{X}) & \geq \frac{1}{N} \operatorname{Tr}(\mathfrak{X})+\frac{N-1}{N}|\mathbf{J}|^{2}-\frac{N}{2} \\
\lambda_{\max }(\mathfrak{X}) & \leq \frac{N-1}{N} \operatorname{Tr}(\mathfrak{X})-\frac{N-1}{N}|\mathbf{J}|^{2}-\frac{N(N-2)}{4},
\end{aligned}
$$

For fixed $|\mathbf{J}|$ these equations describe a polytope in the space of the three eigenvalues of \mathfrak{X}.

- These new inequalities detect all entangled quantum states that can be detected based on knowing the correlation matrix and \mathbf{J}.
[GT, C. Knapp, O. Gühne, and H.J. Briegel, arXiv:0806.1048.]

Outline

(1) Motivation
(2) Entanglement detection with collective observables
(3) Optimal spin squeezing inequalities
(4) Multipartite bound entanglement in spin models

Two-qubit entanglement

- Our criteria can detect entangled states for which the reduced two-qubit density matrix is separable.
- This might look surprising since all our criteria contain operator expectation values that can be computed knowing the average two-qubit density matrix

$$
\rho_{12}:=\frac{1}{N(N-1)} \sum_{k \neq 1} \rho_{k l}
$$

and no information on higher order correlation is used.

- Still, our criteria do not merely detect entanglement in the reduced two-qubit state!

Bound entanglement in spin chains

- Let us consider four spin-1/2 particles, interacting via the Hamiltonian

$$
H=\left(h_{12}+h_{23}+h_{34}+h_{41}\right)+J_{2}\left(h_{13}+h_{24}\right)
$$

where $h_{i j}=\sigma_{x}^{(i)} \otimes \sigma_{x}^{(j)}+\sigma_{y}^{(i)} \otimes \sigma_{y}^{(j)}+\sigma_{z}^{(i)} \otimes \sigma_{z}^{(j)}$ is a Heisenberg interaction between the qubits i, j.

- For the above Hamiltonian we compute the thermal state $\varrho\left(T, J_{2}\right) \propto \exp (-H / k T)$ and investigate its separability properties.
- For several separability criteria we calculate the maximal temperature, below which the criteria detect the states as entangled.

Bound entanglement in spin systems II

- Bound temperatures for entanglement

For $J_{2} \gtrsim-0.5$, the spin squeezing inequality is the strongest criterion for separability. It allows to detect entanglement even if the state has a positive partial transpose (PPT) with respect to all bipartition.

Bound entanglement in spin systems III

- We found bound entanglement that is PPT with respect to all bipartitions in XY and Heisenberg chains, and also in XY and Heisenberg models on a completely connected graph, up to 10 qubits.
- Thus for these models, which appear in nature, there is a considerable temperature range in which the system is already PPT but not yet separable.

Bound entanglement in spin systems IV

- Simple example: Heisenberg system on a fully connected graph

$$
H=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}=\frac{3 N}{4}+\frac{1}{4} \sum_{k \neq 1} \sigma_{x}^{(k)} \sigma_{x}^{(I)}+\sigma_{y}^{(k)} \sigma_{y}^{(l)}+\sigma_{z}^{(k)} \sigma_{z}^{(I)}
$$

- The ground state is very mixed: For large temperature range it is PPT bound entangled.
- The thermodynamics of this system can be computed analytically. Optimal spin squeezing inequalities are violated for $T<N$. [GT, pra 71, 010301 (R) (2005).]

Conclusions

- We presented a family of entanglement criteria that are able to detect any entangled state that can be detected based on the first and second moments of collective angular momenta.
- We explicitly determined the set of points corresponding to separable states in the space of first and second order moments.
- We applied our findings to examples of spin models, showing the presence of bound entanglement in these models.
- Presentation based on: GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007); Recent results: arXiv:0806.1048.
*** THANK YOU ***

