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Why is multipartite entanglement interesting?

There have been many experiments recently aiming to create
many-body entangled states.

Quantum Information Science can help to find good targets for
such experiments.

Multipartite entangled states are needed in applications such as
metrology.
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Several qubits

Definition
A state is (fully) separable if it can be written as∑

k pk%
(k)

1 ⊗ %
(k)

2 ⊗ ... ⊗ %
(k)

N .

Definition
A pure multi-qubit quantum state is called biseparable if it can be
written as the tensor product of two multi-qubit states

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉.

Here |Ψ〉 is an N-qubit state. A mixed state is called biseparable, if it
can be obtained by mixing pure biseparable states.

Definition
If a state is not biseparable then it is called genuine multi-partite
entangled.



k-producibility/k-entanglement

Definition
A pure state is k -producible or k -entangled if it can be written as

|Φ〉 = |Φ1〉 ⊗ |Φ2〉 ⊗ |Φ3〉 ⊗ |Φ4〉....

where |Φl〉 are states of at most k qubits. A mixed state is k -producible,
if it is a mixture of k -producible pure states.



Convex sets for the multipartite case

The idea of convex sets also work for the multi-qubit case: A state
is biseparable if it can be obtained by mixing pure biseparable
states.

Genuine multipartite
 entangled states

Separable states

Biseparable states

W
itn

es
s



Examples

Examples
Two entangled states of four qubits:

|GHZ4〉 = 1√
2

(|0000〉+ |1111〉),

|ΨB〉 = 1√
2

(|0000〉+ |0011〉) = 1√
2
|00〉 ⊗ (|00〉+ |11〉).

The first state is genuine multipartite entangled, the second state
is biseparable.
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Physical systems

State-of-the-art in experiments
100,000 atoms realizing an array of 1D Ising spin chains (Nature,
2003)

Spin squeezing with 106 - 1012 atoms (Nature, 2001)

Main challenge
The particles cannot be addressed individually.

Only collective quantities can be measured.

New type of entangled states and entanglement criteria are
needed.



Many-particle systems

For spin-1
2 particles, we can measure the collective angular

momentum operators:

Jl := 1
2

N∑
k=1

σ
(k)

l ,

where l = x , y , z and σ(k)

l a Pauli spin matrices.

We can also measure the

(∆Jl)
2 := 〈J2

l 〉 − 〈Jl〉
2

variances.
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Spin squeezing

Definition
Spin squeezing criterion for the detection of quantum entanglement

(∆Jx )2

〈Jy 〉2 + 〈Jz〉2
≥

1
N
.

If a quantum state violates this criterion then it is entangled.

Application: Quantum metrology, magnetometry.

[ A. Sørensen et al., Nature 409, 63 (2001) ]
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Complete set of the generalized spin squeezing
criteria

Let us assume that for a system we know only

~J := (〈Jx 〉, 〈Jy 〉, 〈Jz〉),

~K := (〈J2
x 〉, 〈J

2
y 〉, 〈J

2
z 〉).

Then any state violating the following inequalities is entangled

〈J2
x 〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤ N(N + 2)/4,

(∆Jx )2 + (∆Jy )2 + (∆Jz)2 ≥ N/2,

〈J2
k 〉+ 〈J2

l 〉 − N/2 ≤ (N − 1)(∆Jm)2,

(N − 1)
[
(∆Jk )2 + (∆Jl)

2
]
≥ 〈J2

m〉+ N(N − 2)/4.

where k , l ,m takes all the possible permutations of x , y , z.
[ GT, C. Knapp, O. Gühne, and H.J. Briegel, Phys. Rev. Lett. 2007 ]



The polytope

The previous inequalities, for fixed 〈Jx/y/z〉, describe a polytope in
the 〈J2

x/y/z〉 space.

Separable states correspond to points inside the polytope. Note:
Convexity comes up again!
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The derivation of such criteria
The derivation of such criteria is partly based on entanglement
detection with uncertainty relations.
For a multi-qubit pure product state |ΨP〉 =

⊗
k |ψk 〉we have

(∆Jl)
2 =

∑
k

(∆j(k)

l )2
ψk
.

Hence, ∑
l=x ,y ,z

(∆Jl)
2
|ΨP〉

=
∑

l=x ,y ,z

N∑
k=1

(∆Jl)
2
|Ψk 〉

=

1
4

N∑
k=1

(3 − 〈σ(k)
x 〉

2 − 〈σ
(k)
y 〉

2 − 〈σ
(k)
z 〉

2) =
N
2
.

Due to the concavity of the variance, for mixed separable states
we have ∑

l=x ,y ,z

(∆Jl)
2 ≥

N
2
.
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Quantum Fisher information

One of the important applications of entangled multipartite
quantum states is sub-shotnoise metrology.
[V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).]

Multipartite entanglement, not simple nonseparability, is needed
for extreme spin squeezing, which can be applied in spectroscopy
and atomic clocks.
[A.S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431 (2001).]

Not all entangled states are useful for phase estimation, at least in
a linear interferometer.
[P. Hyllus, O. Gühne, and A. Smerzi, arXiv:0912.4349.]



Quantum Fisher information II

Quantum Cramér-Rao bound
For such a linear interferometer the phase estimation sensitivity is
limited by the Quantum Cramér-Rao bound as

∆θ ≥
1√

FQ[%, J~n]
,

where FQ is the quantum Fisher information, % is a quantum state and
J~n is a component of the collective angular momentum in the direction
~n. The phase estimation is connected to the dynamics
% = e−iθJ~n%0e+iθJ~n .

[C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New

York, 1976);
A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory (North-Holland,
Amsterdam, 1982).]



Quantum Fisher information III
The quantum Fisher information is the supremum of the following
[Braunstein, Caves, 1994]

F (%(θ), {E(ξ)}) =

∫
[Tr%(θ)′E(ξ)]2

Tr%(θ)E(ξ)
dξ.

In another context, there are several possible Fisher informations.
The Braunstein-Caves’s one the minimal Fisher information.
Notation:

%(θ) = D + Bθ,

such that Tr(B) = 0 and D = diag(λ1, λ2, λ3, ...).

Fmin(D,B) =
∑

ij

2
λi + λj

|Bij |
2 Fmin(D, i[D,X ]) =

∑
ij

2(λi − λ)2

λi + λj
|Xij |

2.

[D. Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. 244(1996), 81–96;
D. Petz and Cs. Sudár, World Scientific, 1999;
D. Petz and C. Ghinea, arXiv:1008.2417.]



Quantum Fisher information IV

Notation
The two notations are equivalent

F [%,X ] ≡ Fmin(%, i[%,X ]).
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Properties of the Quantum Fisher information

For calculating many quantities, it is sufficient to know that following
two relations.

1 For a pure state %, we have F [%, Jl ] = 4(∆Jl)
2
% .

2 F [%, Jl ] is convex in the state, that is
F [p1%1 + p2%2, Jl ] ≤ p1F [%1, Jl ] + p2F [%2, Jl ].

From these two statements, it also follows that F [%, Jl ] ≤ 4(∆Jl)
2
% .

[C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New
York, 1976);
A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory (North-Holland,
Amsterdam, 1982);
S.L. Braunstein and C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994); L. Pezzé and A.
Smerzi, Phys. Rev. Lett. 102, 100401 (2009). ]



Properties of the Quantum Fisher information II

For computing the Fisher information numerically, we recall that the
quantum Fisher information FQ[%, J~n] for any ~n can be given as

FQ[%, J~n] = 4~nT ΓC~n.

Here, the ΓC matrix is defined as

[ΓC ]ij =
1
2

∑
l ,m

(λl + λm)

(
λl − λm

λl + λm

)2

〈l |Ji |m〉〈m|Jj |l〉,

where the sum is over the terms for which λl + λm , 0, and the density
matrix has the decomposition

% =
∑

k

λk |k〉〈k |.

For pure states, and [ΓC ]ij = 〈JiJj + JjJi〉/2 − 〈JiJj〉.

[P. Hyllus, O. Gühne, and A. Smerzi, arXiv:0912.4349.]
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Quantum Fisher information and entanglementand

Pezzé, Smerzi, PRL 2009
For N-qubit separable states, the values of FQ[%, Jl ] for l = x , y , z are
bounded as

FQ[%, Jl ] ≤ N .

Here, Jl = 1
2
∑N

k=1 σ
(k)

l where σ(k)

l are the Pauli spin matrices for qubit
(k).



Quantum Fisher information and entanglement II

Observation 1
For N-qubit separable states, the values of FQ[%, Jl ] for l = x , y , z are
bounded as ∑

l=x ,y ,z

FQ[%, Jl ] ≤ 2N . (2)

Later we will also show that Eq. (2) is a condition for the average
sensitivity of the interferometer. All states violating Eq. (2) are
entangled.



Quantum Fisher information and entanglement III

Observation 2
For quantum states, the Fisher information is bounded by above as∑

l=x ,y ,z

FQ[%, Jl ] ≤ N(N + 2). (3)

Greenberger-Horne-Zeilinger (GHZ) states and N-qubit symmetric
Dicke states with N

2 excitations saturate Eq. (3).

The above symmetric Dicke state has been investigated recently
due to its interesting entanglement properties. It has also been
noted that above Dicke state gives an almost maximal phase
measurement sensitivity in two orthogonal directions.

In general, pure symmetric states for which 〈Jl〉 = 0 for l = x , y , z
saturate Eq. (3).



Quantum Fisher information and multipartite
entanglement

Next, we will consider k -producible or k -entangled states:

Observation 3
For N-qubit k -producible states states, the sum of three Fisher
information terms is bounded from above by∑

l=x ,y ,z

FQ[%, Jl ] ≤ nk(k + 2) + (N − nk)(N − nk + 2).

where n is the integer part of N
k . For the k = N − 1 case, this bound

can be improved ∑
l=x ,y ,z

FQ[%, Jl ] ≤ N2 + 1. (4)

Eq. (4) is also the inequality for biseparable states. Any state that
violates Eq. (4) is genuine multipartite entangled.



Quantum Fisher information and multipartite
entanglement
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Figure: Interesting points in the (FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space for N = 6
particles. Points corresponding to separable states satisfy Eq. (2) and are not
above the Sx − Sy − Sz plane. Biseparable states satisfy Eq. (4) and are not
above the Gx −Gy −Gz plane.



Proof of Observation 1

First, we shown that Observation 1 is true for pure states. For every
N-qubit pure product state of the form

|ΨP〉 = ⊗N
k=1|Ψk 〉

we have

∑
l=x ,y ,z

(∆Jl)
2
|ΨP〉

=
∑

l=x ,y ,z

N∑
k=1

(∆Jl)
2
|Ψk 〉

=

1
4

N∑
k=1

(3 − 〈σ(k)
x 〉

2 − 〈σ
(k)
y 〉

2 − 〈σ
(k)
z 〉

2) =
N
2
.

For mixed states,
∑

l=x ,y ,z FQ[%, Jl ] ≤ 2N follows from the convexity of
the Fisher information. This finishes the proof.
[G. Tóth, Phys. Rev. A 69, 052327 (2004).]



Proof of Observation 1 - II

Observation 1 can be reformulated with the eigenvalues of ΓC as

Tr(ΓC) ≤ 2N .

We can rewrite the left hand side as

avg~n(FQ[%, J~n]) = 4avg~n{Tr[ΓC(~n~nT )]} = 4Tr(ΓC
1

3
),

where averaging is over all three-dimensional unit vectors. Thus,
Observation 1 is a condition for the average sensitivity of the
interferometer.



Proof of Observation 2

Again, we have to use∑
l=x ,y ,z

F (%, Jl) ≤ 4
∑

l=x ,y ,z

(∆Jl)
2 ≤ N(N + 2). (5)

For pure states, the first inequality of Eq. (5) is saturated.

For symmetric states with 〈Jl〉 = 0 for l = x , y , z, the second
inequality is saturated. Hence GHZ states and Dicke states with N

2
excitations saturate Eq. (5).
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Which part of the space corresponds to quantum
states

We discuss which part of the (FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space
contains points corresponding to states with different degree of
entanglement.

This is important, since apart from finding inequalities for states
of various types of entanglement, we have to show that there are
states that fulfill these inequalities.



Which part of the space corresponds to quantum
states

Let us see first the interesting points of the
(FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space and the corresponding quantum
states:

A completely mixed state

%C =
1

2N
.

corresponds to the point C(0,0,0).

States corresponding to the points
Sx (0,N ,N),Sy (N ,0,N),Sz(0,N ,N) are

|Ψ〉Sl = |+
1
2
〉
⊗N/2
l ⊗ | −

1
2
〉
⊗N/2
l

for l = x , y , z.



Which part of the space corresponds to quantum
states II

For the point Dz(N(N + 2)/2,N(N + 2)/2,0), a corresponding
quantum state is an N-qubit symmetric Dicke state with N/2
excitations in the z basis.

|D
(N/2)

N 〉 =

(
N

N/2

)− 1
2 ∑

k

Pk {|0)⊗
N
2 ⊗ |1)⊗

N
2 },

where
∑

k Pk denotes summation over all possible permutations.

For the point (N ,N ,N2), a corresponding quantum state is an
N-qubit GHZ states in the z basis

|Ψ〉GHZz =
1
√

2

(
|0〉⊗N + |1〉⊗N

)
.



Which part of the space corresponds to quantum
states III
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For all points in the Sx ,Sy ,Sz polytope, there is a corresponding
pure product state for even N .

For given F [%, Jl ] for l = x , y , z, such a state is defined as

% =

14 +
1
4

∑
l=x ,y ,z

clσl


⊗N/2

⊗

14 − 1
4

∑
l=x ,y ,z

clσl


⊗N/2

,

where c2
l = 1 − FQ [%,Jl ]

N , where
∑

l c2
l = 1.



Which part of the space corresponds to quantum
states IV

For all points in the Dx ,Dy ,Dz polytope, there is a corresponding
quantum state if N is divisible by 4. To see this, let us consider the
following quantum states for even N

|Ψeven〉 =
∑

n=0,2,4,...,N/2

cn
1
√

2

(
|D

(n)

N 〉+ |D
(N−n)

N 〉

)
, (6)

where cn are complex coefficients. For |Ψeven〉, we have 〈Jl〉 = 0 for
l = x , y , z. Finally, 〈JlJm + JmJl〉 = 0 if l , m, thus for |Ψeven〉 the
matrix ΓC is diagonal.

For the case of N is a multiple of 4, one can consider the states of
the form

|Ψ(α, β, γ)〉 = αx |D
(N/2)

N 〉x + αy |D
(N/2)

N 〉y + αz |D
(N/2)

N 〉z , (7)

where αl are complex coefficients. (Note that |D(N/2)

N 〉l are not
pairwise orthogonal.) The states (7) fill the polytope Dx , Dx , and
Dz .



Which part of the space corresponds to quantum
states V
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Figure: Randomly chosen points in the (FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space
corresponding to states of the form
|Ψ(α, β, γ)〉 = αx |D

(N/2)

N 〉x + αy |D
(N/2)

N 〉y + αz |D
(N/2)

N 〉z , for N = 8. All the points
are in the plane of Dx ,Dy and Dz .



Which part of the space corresponds to quantum
states VI

Three-dimensional polytopes. The points corresponding to the
mixed state are on a curve in the
(FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space. In the general case, this
curve is not a straight line. For the case of mixing a pure state with
the completely mixed state the curve is a straight line. Such a
state is defined as

%(mixed)(p) = p% + (1 − p)
1

2N

Using the formula for ΓC , after simple calculations we have

Γ
(mixed)

C (p) =
p2

p + (1 − p)2−(N−1)
Γ

(%)

C .



Which part of the space corresponds to quantum
states VII

0 10 20 30 0
10

20
30

0

5

10

15

20

25

30

F
Q

[ρ,J
y
]

D
z

G
z

D
y

G
y

F
Q

[ρ,J
x
]

D
x

S
z

G
x

S
y

S
x

C

F
Q

[ρ
,J

z]

Observation 5. If N is even, then there is a separable state for each
point in the Sx ,Sy ,Sz ,C polytope.

Proof. This is because there is a pure product state corresponding to
any point in the Sx ,Sy ,Sz polytope. When mixing any of these states
with the completely mixed state, we obtain states that correspond to
points on the line connecting the pure state to point C.



Which part of the space corresponds to quantum
states VIII
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Observation 6. If N is divisible by 4, then for all the points of the
Dx ,Dy ,Dz ,Gx ,Gy ,Gz polytope, there is a quantum state with genuine
multipartite entanglement.

Proof. There is a quantum state for all points in the Dx ,Dy ,Dz polytope.
Mixing them with the completely mixed state, states corresponding to
all points of the C,Dx ,Dy ,Dz polytope can be obtained. Based on
Observation 2, states corresponding to the points in the
Dx ,Dy ,Dz ,Gx ,Gy ,Gz polytope are genuine multipartite entangled.

Finally, note that all the quantum states we presented in this section
have a diagonal ΓC matrix.



Summary
We discussed entanglement detection in multipartite systems.

We considered
entanglement detection with variances and the Fisher information

we considered different types of multipartite entanglement

GT, “Multipartite entanglement and high precision metrology”,
arxiv:1006.4368.

See another article on a similar topic:
P. Hyllus et al., arXiv:1006.4366.

THANK YOU FOR YOUR ATTENTION!
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