Witnessing Entanglement with the Stabilizer Formalism

<u>Géza Tóth</u> (MPQ) Otfried Gühne (Innsbruck)

quant-ph/0501020 PRL 94, 060501 (2005)

DPG, Berlin, March 2005

Outline

- Posing the problem.
- Stabilizing operators for GHZ and cluster states
- Entanglement conditions with stabilizing operators
- Characterizing entanglement conditions: Noise tolerance
- Criteria for detecting genuine multi-qubit entanglement (or estimating the fidelity)
- Nonlinear entanglement criteria

Main problems in a *many*-qubit system

- Let us consider systems in which the qubits are individually accessible, but only *local* measurements are possible.
- Complete state tomography is very hard since the number of measurements increases *exponentially* with the number of qubits.
- Measuring a usual entanglement witness or the fidelity with respect to a given state is also very hard.
- We look for a solution using stabilizer theory. This makes it possible to characterize the state with few measurements.

Stabilizing operators

• An operator S_k stabilizes the quantum state $|\Psi\rangle$ if

$$\Psi \rangle = S_k |\Psi \rangle$$

- Many quantum states can be more efficiently described by their stabilizing operators, than by the state vector.
- This is used in error correction [Gottesman PRA 96].

Stabilizing operators for the GHZ state

• Example: GHZ state: $|000\rangle + |111\rangle$

$$S_1 = X^{(1)} X^{(2)} X^{(3)},$$

Stabilized by: $S_2 = Z^{(1)} Z^{(2)},$
 $S_3 = Z^{(2)} Z^{(3)}.$

• The GHZ state is *uniquely* characterized by

$$\langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = +1.$$

Our first sufficient entanglement condition

• For pure product states

$$\begin{split} \left\langle S_{1} + S_{2} \right\rangle &= \left\langle X^{(1)} X^{(2)} X^{(3)} + Z^{(1)} Z^{(2)} \right\rangle \\ &= \left\langle X^{(1)} \right\rangle \left\langle X^{(2)} \right\rangle \left\langle X^{(3)} \right\rangle + \left\langle Z^{(1)} \right\rangle \left\langle Z^{(2)} \right\rangle \\ &\leq \left| \left\langle X^{(1)} \right\rangle \left\langle X^{(2)} \right\rangle \right| + \left| \left\langle Z^{(1)} \right\rangle \left\langle Z^{(2)} \right\rangle \right| \leq 1 \end{split}$$

• Due to the convexity of separable states, this is also true for mixed separable states.

Our first sufficient entanglement condition II

• For separable states

$$\left\langle X^{(1)}X^{(2)}X^{(3)} + Z^{(1)}Z^{(2)} \right\rangle \leq 1$$

If this bound is violated then the state is entangled.

• For the GHZ state

$$\left\langle X^{(1)}X^{(2)}X^{(3)} + Z^{(1)}Z^{(2)} \right\rangle = 2$$

Stabilizing operators for cluster states

Stabilizing operators for an N-qubit cluster state

$$\begin{split} S_1 &= X^{(1)} Z^{(2)}, \\ S_k &= Z^{(k-1)} X^{(k)} Z^{(k+1)}; \quad k = 2, 3, \dots, N-1, \\ S_N &= Z^{(N-1)} X^{(N)}. \end{split}$$

• For separable states

$$\left\langle S_{k} + S_{k+1} \right\rangle \leq 1$$

How to measure the conditions?

 Advantage of our conditions that they are easy to measure *locally*

$$\left\langle X^{(1)}X^{(2)}X^{(3)} + Z^{(1)}Z^{(2)} \right\rangle \leq 1$$

- Two local measurement settings are needed

 $X \quad X \quad X$

2

3

Noise tolerance

 In an experiment the GHZ state is never prepared perfectly

$$\rho = (1 - p_{noise}) | GHZ_3 \rangle \langle GHZ_3 | + p_{noise} \rho_{completely_mixed}$$

• For each entanglement condition there is a noise limit. For a noise larger than this limit the GHZ state is not detected as entangled.

Noise tolerance II

Let us take the condition

$$\langle S_1 + S_2 \rangle = \langle X^{(1)} X^{(2)} X^{(3)} + Z^{(1)} Z^{(2)} \rangle \le 1$$

Noise is tolerated if $p_{noise} < 1/2$

• Better condition, tolerating noise if $p_{noise} < 2/3$ $\langle S_1 + S_2 + S_1 S_2 \rangle =$ $\langle X^{(1)} X^{(2)} X^{(3)} + Z^{(1)} Z^{(2)} - Y^{(1)} Y^{(2)} X^{(3)} \rangle \le 1$

Genuine multi-qubit entanglement

- Genuine three-qubit entanglement $|000\rangle + |111\rangle$
- Biseparable entanglement

 $|001\rangle + |111\rangle = (|00\rangle + |11\rangle)|1\rangle$

• A mixed entangled state is *biseparable* if it is the mixture of biseparabe states (of possibly different partitions).

Entanglement witnesses for detecting genuine multi-qubit entanglement

PRL+quant-ph/0405165

Witnesses for detecting genuine multi-qubit entanglement

$$W_{GHZ_N} = 3 - 2 \left[\frac{1 + S_1^{(GHZ_N)}}{2} + \prod_{k>1} \frac{1 + S_k^{(GHZ_N)}}{2} \right]$$

X X X X X X Z Z Z Z Z

- Advantage: only the minimal two measurement settings are needed, no exponential increase with the number of qubits!
- Similar ideas can be used to estimate the fidelity.

Conditions based on uncertainty relations

 Based on the ideas of Gühne PRL 92, 117903 for biseparable states of the type (1)(23) we have

$$\left\langle X^{(1)} X^{(2)} X^{(3)} + Z^{(1)} Z^{(2)} \right\rangle + \frac{1}{2} \left(\left\langle X^{(1)} + X^{(2)} X^{(3)} \right\rangle^2 + \left\langle Z^{(1)} + Z^{(2)} \right\rangle^2 \right) \le 1$$

• Nonlinear terms: play the role of "refinement"

Conditions based on entropic uncertainty relations

 Based on the ideas of [Gühne & Lewenstein PRA 70, 023316] for biseparable states we have,

$$\sum_{k=1}^{N} H(S_k) \le \ln 2$$

where H(A) is the Shannon entropy of the outcomes after measuring operator A.

PRL 94, 060501 (2005)

quant-ph/0501020

Summary

- We constructed entanglement conditions with stabilizing operators.
- Our conditions detect entangled states close to GHZ and cluster states.
- Home page: http://www.mpq.mpg.de/Theorygroup/CIRAC/people/toth