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0 Motivation
@ What can be interesting for people working on QCD in Quantum
Information?
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What can be interesting for QCD people in

Quantum Information?

@ Entanglement theory can help to recognize real two- and
three-particle states.

@ QCD-like systems can be realized with cold atoms.



Quantum Information Science

@ Quantum optics 60’s (collective manipulation of particles)
e matter-light interaction, laser, etc.

@ Quantum information 80’s/90’s-
(individual manipulation of particles)

e Few-body systems

@ cold trapped ions
@ cold atoms on an optical lattice
@ photons

e Many-body systems

@ cold atomic ensembles
@ Bose-Einstein Condensates of cold atoms



Quantum Information Science Il

@ Quantum information 80’s/90’s- (continued)

e Entanglement theory

e Quantum computers and algorithms for quantum computers (prime
factoring)

e Quantum cryptography, quantum communication



e Quantum entanglement
@ Pure states: is it a pair or is it not a pair?
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Pure states: is it a pair or is it not a pair?

Separability

A bipartite pure state is separable if and only if it is a product state.
Otherwise the state is called entangled.

@ Easy to check. The reduced state of the second party is obtained
as

O2red =I11(|W12)(W12l)

@ If |Wyin) = |Vq) ®|Wy) if and only iff
Tr(05,.4) = 1.

@ Alternatively: ... if and only if

S(QZred) =0,
where S is the von Neumann entropy



Pure states: is it a pair or is it not a pair? Il

Von Neumann entropy of a block measures
@ the purity of the block,
@ that is, entanglement with the neighborhood.



Pure states: is it a pair or is it not a pair? Il

@ Example 1: product state

1 1
V12) = 5 (100+1))(0)+]1)) = 5(100) +[01) +[10) + [11)).

A particle is “independent” from the other. The single particle
reduced state is pure.

1
Oed = 5 (10)+11)) (O1+(11) .

@ Example 2: entangled state

W12) = —= (100) + [11)).

2

The single particle reduced state is completely mixed.

(1001 + [1)(11)..

N —

O2red =



e Quantum entanglement

@ Mixed states: is it a pair or is it not a pair?
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Mixed states: is it a pair or is it not a pair?

Separability

A quantum state is called separable if it can be written as [Werner,
1989]

0= Zpg @0y,

where p, form a probability distribution (px > 0, >4 px = 1), and g(k)
are single-particle density matrices. A state that is not separable is
called entangled.

@ The purity or the von Neumann entropy cannot detect
entanglement any more so easily.



Mixed states: is it a pair or is it not a pair?

Entanglement of formation

For mixed states the entanglement of formation is given as a convex
roof

Er = b rrknr,;k Zpks Try (IW)Wkl)),

where

0= D PlVi(Vl.
k

@ In general, there is no closed formula.

@ Easy to compute for small systems or for systems with some
symmetry.



Mixed states: is it a pair or is it not a pair? Il

Let us mix

Wiy = — (j00y+111)

\/—( )

and :

wi?y — 00)-/11)),

| > \/E(l )-111))
as

(I\U WP+ W),

@ Question: Is this entangled? It is a mixture of entangled states.
@ Answer: no, since o can be written as

1
=3 (100)00] + [11)¢11]).



e Quantum entanglement

@ Local Operations and Classical Communication (LOCC)
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Local Operations and Classical Communication

(LOCC)

@ LOCC are

@ local unitaries
U o Us

@ local von Neumann (or POVM) measurements
M ® Identity

@ local unitaries or measurements conditioned on measurement
outcomes on the other party.

@ LOCC cannot create entangled states from a separable state.



Local Operations and Classical Communication
(LOCC)

PARTICLE; PARTICLE

No entanglement can be created without real two-body quantum
dynamics.



@ Examples for entanglement in QCD
@ Quarks and gluons
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Entanglement and QCD

@ A quark/antiquark pair in a gluon environment and look at the
entropy of the color state of the quarks.
[ Buividovich, Kuvshinov, AIP Conf. Proc. 1205, 26 (2010). ]

@ The color state is a singlet
= purity is 1 and the entropy is zero.

S2



Entanglement and QCD Il

@ The entanglement between the quarks and the gluons tells us only
indirect information about the entanglement between the quarks.

@ Monogamy of entanglement (official terminology!):

e when the two quarks are maximally entangled (=singlet), they
cannot be entangled with the environment.

[ V. Coffman et al., Phys. Rev. A 61, 052306 (2000);
B. M. Terhal, Linear Algebra Appl. 323, 61 (2001).]



Entanglement and QCD Il

@ Question: Is there entanglement between the two quarks?

@ Answer: More complicated question. The color state is mixed,
thus the entanglement cannot be so easily computed.

|
S1 |
|



Entanglement between the quarks

@ If the state is not entangled then there are no pairs, Ef = 0!

@ If the state is entangled, then there are pairs. For two-body
singlets E =maximal!



@ Examples for entanglement in QCD

@ Entanglement criterion for d = 3-dimensional particles
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Criterion to exclude separability

@ Entanglement measures are hard to compute. Let us look for
some sufficient condition for entanglement.

@ g with/=1,2,...,8 are the Gell-Mann matrices.

@ Collective operators:

Gi:=g" - (g

@ We also need the variances

(AG)? :=(G?) - (G)~.



@ Examples for entanglement in QCD

@ Detection of singlets
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Criterion to exclude separability Il

A condition for separability is

D (AGK)? = 2N(d - 1)
k

withd =3 and N = 2.

@ Any state that violates this is entangled.
@ For two-body color singlets, the LHS=0!

[ G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Téth,
Optimal spin squeezing inequalities for arbitrary spin,
Phys. Rev. Lett. (2011). ]



Similar ideas for N>2 for tree-body singlets

@ g/ with /=1,2, ..., 8 are the Gell-Mann matrices.

@ Collective operators:

N
k
G = Z g,( )
k=1



Criterion for three-particle entanglement (trion

A condition for states without three-particle entanglement is

D (AGK)? 2 2N(d - 2)
k

with d =3 and N = 3.

@ Any state that violates this is three-particle entangled.

@ Recognizes three-particle color singlets! For the singlet the
LHS=0.

[ G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Téth,
Optimal spin squeezing inequalities for arbitrary spin,
Phys. Rev. Lett. (2011). ]



e Quantum optical systems and QCD
@ Cold gases on a lattice
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Quantum Matter
PERSPECTIVE

Quantum Gases

Immanuel Bloch

Ultracold quantum gases are proving to be a powerful model system for strongly interacting
electronic many-body systems. This Perspective explores how such atomic ensembles can help to
unravel some of the outstanding open questions in the field.

hen matter is cooled down close to
zer0 temperature, particles can_in-
feract in a cooperative way and form

novel states of matter with striking properties—
superconductors, superfluids, or fractional quan-
tum Hall liquids. Similar phenomena can now
be observed in a dilute gas of atoms, five to six
orders of magnitude less dense than the air
sumounding us. Here, degenerate bosonic and
fermionic quantum gases trapped in magnetic or
optical traps are generated at temperatures in the
nanokelvin regime (/). Whereas initial rescarch
concentrated on weakly interacting quantum
states [for example, on elucidating the coherent
matter wave features of Bose-Einstein conden-
sates (BECs) and their superfluid properties],
research has now tumed toward strongly inter-
acting bosonic and fermionic systems (2, 3). In
these systems, the interactions_between the
particles dominate over their kinetic energy,
making them difficult to tackle theoretically
but also opening the path to novel ground states
with collective properties of the many-body
system. This has given rise to the hope of using
the highly controllable quantum gases as model
systems for condensed-matter physics, along
the lines of a quantum simulator, as originally
suggested by Feynman (4).

o prominent examples have dominated the
research in this respect: (i) the transition from a
cunerfluid to a Mott insulator of hosonic atoms.

Feshbach resonances. Such bosonic composites
can themselves undergo Bose-Einstein conden-
sation, thus fundamentally altering the properties
of the many-body system. When a true two-
body bound state exists between the particles,
the composite bosonic particle is simply a mol-
ecule, albeit very large, whereas in the case of
attractive interactions without a two-body bound
state the composite pair can be seen o be re-
lated to a BCS-type Cooper pair, which can
then undergo condensation. It is the possibility
of changing almost all the underlying param-

Cold gas experiments and QCD

observe exotic forms of superconductivity such
as the Fulde-Ferrell-Larkin-Ovchinnikov super-
conducting phase (13, 14), where particles con-
dense into pairs with nonzero momentum, Early
experiments have produced degenerate mix-
tures of two fermionic atomic species (15) and
two fermionic species with an additional third
bosonic component (16), and both are progress-
ing quickly toward exploiting Feshbach reso-
nances to control the interactions between the
fermionic atoms.

For lattice-based systems, efforts are under
way to explore the feasibility of using ultracold
atoms as quantum simulators for strongly inter-
acting many-body systems. For example, in the
famous class of high-Te superconductors, such
as the CuO compounds, one observes that these
form antiferromagnetically ordered ground states
when undoped. Upon doping, and thereby
changing the effective filling in the system,
the antiferromagnetic order is destroyed and a
superconducting phase with d-wave symmetry
of the order parameter emerges (17) (Fig. 2
What exactly happens during the transition

and how it can be described
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theoretically is currently a
subject of heated debates
and one of the fundamental
unsolved problems in the
field of condensed-matter
physics. Cold-atom rescarchers
are currently trying to deter-
mine whether they can help
10 resolve some of these is-
sues (18). As a stating point,
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Fig. 1. Three-species fermionic atoms (red, green, and blue spheres)
in an optical lattice can form two distinct phases when the interactions
between the atoms are tuned. In the first case of strong attractive
interactions between the atoms, they join as “trions” (A), whereas in
the second case of weaker interactions, a color superfluid is formed
(B), in which atoms pair up between only two species. The two phases
have strong analogies to the baryonic phase (A) and the color

several groups are preparing
o observe antiferromagnet-
ically ordered states in two-
component Fermi mixtures in
an optical latice. To achieve
this, however, one needs to
cool the many-body system
10 challensing temneratires.
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RAPP, HOFSTETTER, AND ZARAND

s L,L,tﬂqu/EZ”%mm,p. 0

with &, the creation opersor ¢ of a fermionic atom of color
@=1,2.3 at site i, and i, =¢é5,e In the wnneling term,
(i implies the restriction to nearest neighbor sites, and the
tunneling _matrix _ element s
R where Eg="L is the recoil energy, ¢
s the wave vector of the lasers, 1 is the mass of the atoms,
o/ Eg. and V; is the depth of the periodic potential >0
We neglect the effects of the confining potential in Eq. (1),
which would correspond to a site-dependent potential term in
the Hamiltonian. The interaction strength U, between col-
ors a and B is related to the corresponding s-wave scattering
length, s, as Uyp=Egd,pq\8/ s Note that fermions
with identical colors do not interact with each other.

For the sake of simplicity, we shall first consider the at-
tractive case with U,,5=U <0. This case could be realized by
loading the °Li atoms into an optical trap in a large magnetic
field, where the scattering lengths become large and nega-
tive, 5= a,~-2500a, for all three scattering channels, 12,
13, and 2320

Introducing  the
(a=1,
tions exp(!
tonian, whic

usual  Gell-Mann  matrices, A

.8). it is easy to see that global SU(3) transforma-
sapbaCiNaplip) commute with the Hami
thus also conserves the total number of fermi-

ons for each color, N,=Si,,. This conservation of particles
is only approximate because in reality the number of the
atoms in the trap continuously decreases due to different
scattering processes. Here, however, we shall neglect this
slow loss of atoms and keep the density p,, of atoms for color
a as well as the overall filling factor p=15,p,, fixed

Let us first focus on the case of equal densities, p,= p. For
small attractive U<0, the ground state is a color
superfluid:'S atoms from two of the colors form the Cooper
pairs and an s-wave superfluid, while the third color remains
an unpaired Fermi liquid. However, as we discussed in Ref.
16, for large attractive interactions, this superfluid state be-
comes unstable, and instead of Cooper pairs, it is more likely
to form three-atom bound states, the so-called “trions.”

Hubbard model with three-state particles

PHYSICAL REVIEW B 77, 144520 (2008)
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FIG. 2. (Color online) The ground states for |U]<[U¢| and
|U]3U| can be caleulated by perturbation theory. The former is a
U(3) symmetry, and the latter is a

trionic state with three-particle singlet bound states.

In order to get analytic expressions, we shall study the
ground state in d=2 dimensions. Then, to reach a meaning-
ful limit and to get finite kinetic energy. one has to scale the
hopping as r=__. with r* fixed. In this limit, however, trions
become immobile. Therefore, the d—ee trionic states are
well approximated as

[0 =TT éées(0). @)
i

where A denotes a subset of sites where trions sit. We can
calculate the energy of this state in infinite dimensions: a
single trion has an energy 3U, thus the energy of such a state
per lattice site is given by E;/N=3Up, with Ey the total
energy of the system and N the number of lattice sites.
Clearly. the two ground states obtained by the perturbative
expansions have different symmetries: the superfluid state
breaks SU(3) invariance, while the trionic state does not.
Therefore, there must be a phase transition between them.
Note that, relying on symmetries only, this argument is very
robust and carries over to any dimensions. In infinite dimen-
sions, we find that trions are immabile. However, this s only
an artifact of infinite dimensions and in finite dimensions, a
superconductor-Fermi liquid phase transition should occur.
One could envision that some other order parameter also
emerges and masks the phase transition discussed here. Pre-
liminary results (not discussed here) suggest that indeed a
charge density state forms at large values of |U]. but except
for half-filling, which is a special case not discussed here, we
do not see any other relevant order parameter that could in-




@ Immanuel Bloch, Quantum Gases, Science 1202, 319 (2008).

@ A. Rapp, W. Hofstetter, and G. Zarand, Trionic phase of ultracold
fermions in an optical lattice: A variational study, Phys. Rev. B 77,
144520 (2008).

e A. Rapp, G. Zarand, C. Honerkamp, and W. Hofstetter, Phys. Rev.
Lett. 98, 160405 (2007).



@ We discussed the possible connection between quantum
chromodynamics and quantum information science

@ In particular, we discussed entanglement theory.

For our criterion, see

G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Téth,
Phys. Rev. Lett. 107, 240502 (2011).
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