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Motivation

Bipartite twirling plays an important role in entanglement
purification protocols.

Multipartite twirling results in a state which can be described
by much fewer parameters than the original one; moreover,
twirling does not increase entanglement. These make twirling
a good candidate for transforming a general quantum state
into a normal form, which then can be detected with few
measurements.

Integrals over the unitary group, similar to the one which has
to be performed for twirling, appear in other areas of physics.
An algorithm for twirling, which can efficiently be used on a
digital computer, can also be useful for computing such
integrals.
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Twirling by averaging over randomly rotated matrices

For a given density matrix ρ the twirled state is defined as

Pρ :=
∫

U∈U(d)
U⊗Nρ(U⊗N)†dU,

where U(d) is the group of d-dimensional unitary matrices, N
is the number of qudits, and dU is the normalized Haar
measure over U(d).

Pρ can be approximated by an average of a finite number of
randomly rotated density matrices

PMρ :=
1
M

ρ + M−1∑
k=1

U⊗N
k ρ(U

⊗N
k )†
 .

Here M denotes the number of terms and we assume that the
unitaries {Uk } are distributed uniformly in U(d) according to
the Haar measure.
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Twirling by averaging over randomly rotated matrices
II

Mixing
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Convergence of the usual method

To analyze the error, we introduce an expectation value or
average over the different choices for Uk as

〈A〉 :=
∫

AdU1dU2dU3...

Simple calculations show that the average squared error of a
particular initial state, ρ, decreases algebraically as M−1

〈‖PMρ − Pρ‖2〉 =
1
M

(
‖ρ‖2 − ‖Pρ‖2

)
,

where ‖A‖2 := Tr(A†A ) is the Hilbert-Schmidt norm.
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Problem with the usual method

Individual addressing of systems is needed.

Twirling is realized in practice as temporal averaging. Thus,
the execution time is proportional to the number of systems in
the ensemble. What if the there are many systems in the
ensemble?

The error decreases slowly (polynomially) with the number of
elementary steps.
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Our proposal for efficient twirling

Let us now consider repeated applications of P2. Remember:

P2ρ :=
1
2

[
ρ + U⊗Nρ(U⊗N)†

]
,

where U is random. After M iterations, the outcome is

QMρ := P2P2...P2ρ =

 M∏
k=1

P2

 ρ.
The error decreases exponentially with M

〈‖QMρ − Pρ‖2〉 =
(
‖ρ‖2 − ‖Pρ‖2

)
2−M .

The error can also be computed for the superoperator. It also
decays as ∝ 2−M . The advantage of this approach is that it
gives statements independent from a concrete density matrix.
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Superoperators

Density matrices are vectors in a Hilbert space. Thus it is
convenient to switch from matrix notation

ρ =
∑

kl

ρkl |k 〉〈l|

and treat the matrices as vectors defined by

vρ =
∑

kl

ρkl |l〉 ⊗ |k 〉.

Any physically allowed transformation of the density matrix is
a linear positive map and it can be written as a matrix acting
on vρ

vρ′ = Svρ.

The distance between superoperators can be measured in the
form of Hilbert-Schmidt norm of their difference

‖S − S̃‖2 := Tr[(S − S̃)(S − S̃)†].
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Simple simulation example
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Mean squared error for the recursive method with random matrices
when applied on three-qubit states. We plot the average over
10000 realizations (dotted) and the theoretical prediction
computed (solid line).
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Quantum circuit for a single iteration step

The implementation does not need an individual access to the
spins. Thus it is suitable for ensemble quantum computing.
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Imperfect random unitaries

An imperfect random unitary generator can be characterized
by the distribution f (U) describing the probability density for
getting U

f (U) := pgg(U) + (1 − pg).

The error decays as

∝

 2

1 + p2
g

−M

.

Thus we have convergence if pg < 1.

In other words, our algorithm still converges to the twirled
state and the error decays exponentially if

inf
U

f (U) > 0.
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Deterministic twirling

What happens if unitaries are not random but they are chosen
deterministically from a small set such that they are cyclically
alternating.

Let us consider the two-qubit case and choose the two
unitaries as

Ux := e icσx ,

Uz := e icσz ,

where σx/z are Pauli spin matrices and c = 1.0894.

Numerical calculations with the superoperator show that we
again have exponential convergence.
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Deterministic twirling II
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Time dependence of the error for two qubits for the deterministic
method using two unitaries.
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Numerical integration over U(d) and SU(d)

Our approach can straightforwardly be generalized for
integrating expressions of the type

I :=
∫

U∈U(d)
Tr(A1U)Tr(A2U)...Tr(AmU)

Tr(B1U†)Tr(B2U†)...Tr(BnU†)dU,

where Ak and Bk are d × d matrices.

These ideas seem to work also when integrating over a
subgroup of U(d), in particular, over the special unitary group
SU(d). Such integrals appear, for example, in quantum
chromodynamics.
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Conclusions

We showed how to realize twirling on a quantum computer or
on a digital computer efficiently.

We presented an iterative method which uses a random
unitary at each step

The error compared to perfect twirling decays exponentially.

The method works also with an imperfect random source or
with deterministically chosen unitaries.

It can be realized with a simple quantum circuit which does
not need an individual access to the qubits.

For further details please see quant-ph/0609052 (to appear in
PRA).

*** THANK YOU ***
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