# Multipartite entanglement and high precision metrology

#### Géza Tóth<sup>1,2,3</sup>

<sup>1</sup>Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2 iKerbasque Basque Foundation for Science, Bilbao, Spain

<sup>3</sup>Wigner Research Centre for Physics, Budapest, Hungary

DPG Meeting, Hannover, 21 March 2013

### **Outline**

- Motivation
  - Why the connection between multipartite entanglement and Fisher information is important?
- Metrology and multipartite entanglement
  - Quantum Fisher information
  - Properties of the Quantum Fisher information
  - Quantum Fisher information and entanglement

# Why the connection between multipartite entanglement and Fisher information is important?

- Genuine multipartite entanglement appears often in quantum information.
- While bipartite entanglement is quite well understood, the role of multipartite entanglement is not so clear.
- Thus, it is very interesting if we can show that it has a central role in metrology.

### **Outline**

- Motivation
  - Why the connection between multipartite entanglement and Fisher information is important?

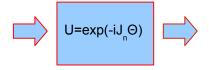
- Metrology and multipartite entanglement
  - Quantum Fisher information
  - Properties of the Quantum Fisher information
  - Quantum Fisher information and entanglement

# Metrology and multipartite entanglement in the literature

- One of the important applications of entangled multipartite quantum states is sub-shotnoise metrology.
   V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
- Multipartite entanglement, not simple nonseparability, is needed for extreme spin squeezing, which can be applied in spectroscopy and atomic clocks.
  - A.S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431 (2001).
- Not all entangled states are useful for phase estimation, at least in a linear interferometer.
  - P. Hyllus, O. Gühne, and A. Smerzi, 82, 012337 (2009).

### **Quantum Fisher information**

• Let us consider the following process:



- The dynamics described above is  $\varrho_{\text{out}} = e^{-i\theta J_{\vec{n}}} \varrho e^{+i\theta J_{\vec{n}}}$ .
- We would like to determine the angle  $\theta$  by measuring  $\varrho_{\mathrm{out}}$ .

### **Quantum Fisher information II**

#### **Quantum Cramér-Rao bound**

The phase estimation sensitivity is limited as

$$\Delta \theta \geq \frac{1}{\sqrt{F_Q[\varrho, J_{\vec{n}}]}},$$

where  $F_Q$  is the quantum Fisher information,  $\varrho$  is a quantum state and  $J_{\vec{n}}$  is a collective angular momentum component.

The Braunstein-Caves quantum Fisher information is

$$F[\varrho,X] = \sum_{ij} \frac{2(\lambda_i - \lambda)^2}{\lambda_i + \lambda_j} |X_{ij}|^2.$$

C.W. Helstrom, Quantum Detection and Estimation Theory (1976),A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory (1982).

### **Outline**

- Motivation
  - Why the connection between multipartite entanglement and Fisher information is important?
- Metrology and multipartite entanglement
  - Quantum Fisher information
  - Properties of the Quantum Fisher information
  - Quantum Fisher information and entanglement

### **Properties of the Quantum Fisher information**

#### Two important properties:

- For a pure state  $\varrho$ , we have  $F[\varrho, J_l] = 4(\Delta J_l)_{\varrho}^2$ .
- ②  $F[\varrho, J_l]$  is convex in the state, that is  $F[p_1\varrho_1 + p_2\varrho_2, J_l] \le p_1F[\varrho_1, J_l] + p_2F[\varrho_2, J_l]$ .

It also follows that  $F[\varrho, J_l] \leq 4(\Delta J_l)_{\varrho}^2$ .

- C.W. Helstrom, Quantum Detection and Estimation Theory (1976).
- A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory (1982).
- S.L. Braunstein and C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
- L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).

### **Outline**

- Motivation
  - Why the connection between multipartite entanglement and Fisher information is important?

- Metrology and multipartite entanglement
  - Quantum Fisher information
  - Properties of the Quantum Fisher information
  - Quantum Fisher information and entanglement

# **Quantum Fisher information and entanglement**

#### Pezzé, Smerzi, PRL 2009

For N-qubit separable states we have

$$F_Q[\varrho,J_I] \leq N.$$

Here,  $J_l = \frac{1}{2} \sum_{k=1}^{N} \sigma_l^{(k)}$  where  $\sigma_l^{(k)}$  are the Pauli spin matrices. The maximum for the left-hand side is  $N^2$ .

Thus, for separable states

$$\Delta \theta \geq \frac{1}{\sqrt{N}}$$

while for entangled states

$$\Delta \theta \geq \frac{1}{N}$$
.

### Quantum Fisher information and entanglement II

#### Observation 1

For N-qubit separable states we have

$$\sum_{l=x,y,z} F_Q[\varrho,J_l] \le 2N. \tag{1}$$

 Eq. (1) is a condition for the average sensitivity of the interferometer. All states violating Eq. (1) are entangled.

GT, PRA 85, 022322 (2012); P. Hyllus et al., PRA 85, 022321 (2012).

### **Quantum Fisher information and entanglement III**

#### Observation 2

For quantum states we have the bound

$$\sum_{I=x,V,Z} F_Q[\varrho,J_I] \le N(N+2). \tag{2}$$

GHZ states and *N*-qubit symmetric Dicke states with  $\frac{N}{2}$  excitations saturate Eq. (2).

- Dicke states have been investigated recently in several experiments.
- In general, pure symmetric states for which  $\langle J_l \rangle = 0$  for l = x, y, z saturate Eq. (2).

GT, PRA 85, 022322 (2012); P. Hyllus et al., PRA 85, 022321 (2012).

# Quantum Fisher information and multipartite entanglement

Next, we will consider k-producible or k-entangled states:

#### **Observation 3**

For N-qubit k-producible states states

$$\sum_{l=x,y,z} F_Q[\varrho,J_l] \leq nk(k+2) + (N-nk)(N-nk+2).$$

where *n* is the integer part of  $\frac{N}{k}$ . For the k = N - 1 case, this bound can be improved

$$\sum_{I=x,y,z} F_Q[\varrho,J_I] \le N^2 + 1. \tag{3}$$

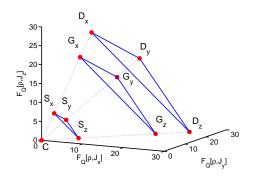
Eq. (3) is also the inequality for biseparable states. Any state that violates Eq. (3) is genuine multipartite entangled.

# **Quantum Fisher information and multipartite entanglement II**

### Fact

Genuine multipartite entanglement, not simple nonseparability is needed to achieve maximum sensitivity in a linear interferometer.

# Quantum Fisher information and multipartite entanglement III



**Figure:** Points in the  $(F_Q[\varrho, J_x], F_Q[\varrho, J_y], F_Q[\varrho, J_z])$ -space for N = 6.

- Points corresponding to separable states are not above the  $S_X S_V S_Z$  plane.
- Points corresponding to biseparable states are not above the  $G_x G_v G_z$  plane.

# Which part of the space corresponds to quantum states? - Points

A completely mixed state

$$\varrho_C = \frac{1}{2^N}.$$

corresponds to the point C(0,0,0).

• States corresponding to the point  $S_x(0, N, N)$  is

$$|\Psi\rangle_{S_I} = |+\frac{1}{2}\rangle_x^{\otimes N/2} \otimes |-\frac{1}{2}\rangle_x^{\otimes N/2}.$$

 $S_{v}$  and  $S_{z}$  are similar.

# Which part of the space corresponds to quantum states? - Points II

•  $D_z$ : N-qubit symmetric Dicke state with  $\frac{N}{2}$  excitations.

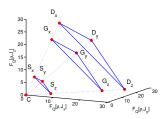
$$|\mathcal{D}_{N}^{(N/2)}\rangle = {N \choose \frac{N}{2}}^{-\frac{1}{2}} \sum_{k} \mathcal{P}_{k} \{|0\rangle^{\otimes \frac{N}{2}} \otimes |1\rangle^{\otimes \frac{N}{2}} \},$$

where  $\sum_{k} \mathcal{P}_{k}$  denotes summation over all possible permutations.

N-qubit GHZ states

$$|\Psi\rangle_{GHZ_z} = rac{1}{\sqrt{2}} \left( |0\rangle^{\otimes N} + |1\rangle^{\otimes N} \right).$$

# Which part of the space corresponds to quantum states? - 2D polytopes

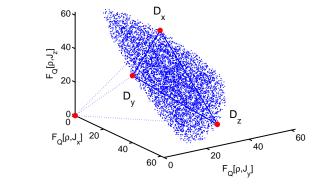


- For all points in the  $S_x$ ,  $S_y$ ,  $S_z$  polytope, there is a corresponding pure product state for even N.
- For given  $F[\varrho, J_l]$  for l = x, y, z, such a state is defined as

$$\varrho = \left[\frac{1}{2} + \frac{1}{2} \sum_{l=x,y,z} c_l \sigma_l\right]^{\otimes N/2} \otimes \left[\frac{1}{2} - \frac{1}{2} \sum_{l=x,y,z} c_l \sigma_l\right]^{\otimes N/2},$$

where  $c_l^2 = 1 - \frac{F_Q[\varrho, J_l]}{N}$ , where  $\sum_l c_l^2 = 1$ .

# Which part of the space corresponds to quantum states? - 2D polytopes II



**Figure:** Randomly chosen points in the  $(F_Q[\varrho, J_x], F_Q[\varrho, J_y], F_Q[\varrho, J_z])$ -space corresponding to states  $|\Psi(\alpha_x, \alpha_y, \alpha_z)\rangle$  for N = 8.

• All the points are in the plane of  $D_x$ ,  $D_y$  and  $D_z$ .

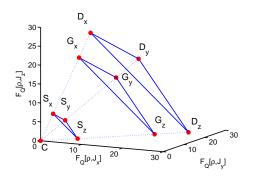
# Which part of the space corresponds to quantum states? - 3D polytopes

A pure state mixed with the completely mixed state

$$\varrho^{\text{(mixed)}}(p) = p\varrho + (1-p)\frac{1}{2^N}$$

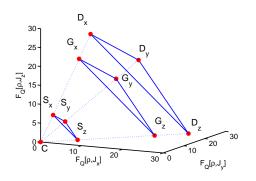
• The states  $\varrho^{\text{(mixed)}}(p)$  are on a straight line on our figures.

# Which part of the space corresponds to quantum states? - 3D polytopes II



**Observation 5.** If *N* is even, then there is a separable state for each point in the  $S_x$ ,  $S_y$ ,  $S_z$ , C polytope.

# Which part of the space corresponds to quantum states? - 3D polytopes III



**Observation 6.** If N is divisible by 4, then for all the points of the  $D_x$ ,  $D_y$ ,  $D_z$ ,  $G_x$ ,  $G_y$ ,  $G_z$  polytope, there is a quantum state with genuine multipartite entanglement.

### **Summary**

- We defined entanglement conditions in terms of the quantum Fisher information.
- We showed that genuine multipartite entanglement is needed for maximum metrological sensitivity.

#### See:

G. Tóth, PRA 85, 022322 (2012).

Similar paper: Hyllus et al, PRA 85, 022321(2012); Krischek et al., PRL 107, 080504 (2011).

#### THANK YOU FOR YOUR ATTENTION!





