Extremal properties of the variance and the quantum Fisher information

G. Tóth^{1,2,3} and D. Petz^{4,5}

¹Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain

2¹ **ikerbasque** Basque Foundation for Science, Bilbao, Spain

 ³Wigner Research Centre for Physics, Budapest, Hungary
 ⁴Rényi Institute for Mathematics, Budapest, Hungary
 ⁵Department for Mathematical Analysis, Budapest University of Technology and Economics, Budapest, Hungary

DPG Meeting, Hannover, 18 March 2013

1 Motivation

• Why variance and the quantum Fisher information are important?

Variance and quantum Fisher information

- Basic definitions
- Entanglement detection with the variance
- Entanglement detection with the quantum Fisher information

- Generalized variance
- Generalized quantum Fisher information
- Generalized quantities in the literature

Why variance and the quantum Fisher information is important?

- Variance appears in all areas of physics.
- Quantum Fisher information is a central notion in metrology.
- Concave roofs, convex roofs are interesting in entanglement theory.

Motivatio

• Why variance and the quantum Fisher information are important?

Variance and quantum Fisher information

- Basic definitions
- Entanglement detection with the variance
- Entanglement detection with the quantum Fisher information

- Generalized variance
- Generalized quantum Fisher information
- Generalized quantities in the literature

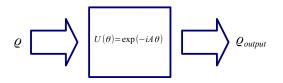
• The variance is defined as

$$(\Delta A)^2_{\ \varrho} = \langle A^2 \rangle_{\varrho} - \langle A \rangle_{\varrho}^2.$$

• The variance is concave.

Quantum Fisher information (QFI)

• The parameter θ must be estimated by measuring he output state :



Cramér-Rao bound

$$\Delta \theta \geq \frac{1}{\sqrt{F_Q^{\text{usual}}[\varrho, A]}}.$$

• The quantum Fisher information is

$$F_Q^{\text{usual}}[\varrho, A] = 2 \sum_{i,j} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j} |A_{ij}|^2$$

• For pure states, $F_Q^{\text{usual}}[\varrho, A] = 4(\Delta A)_{\varrho}^2$, and it is convex. [E.g., P. Hyllus, O. Gühne, and A. Smerzi, Phys. Rev. A 82, 012337 (2010).]

Motivatio

• Why variance and the quantum Fisher information are important?

Variance and quantum Fisher information

- Basic definitions
- Entanglement detection with the variance
- Entanglement detection with the quantum Fisher information

- Generalized variance
- Generalized quantum Fisher information
- Generalized quantities in the literature

- Two properties of the variance are used:
 - For pure states, it is $\langle A^2 \rangle_{\Psi} \langle A \rangle_{\Psi}^2$.
 - It is concave.
- Any other quantity with these propeties could be used instead of the variance.
- If it were smaller than the variance, then it would even be better than the variance for this purpose.
- [O. Gühne, Phys. Rev. Lett. 92, 117903 (2004).]

Motivatio

• Why variance and the quantum Fisher information are important?

Variance and quantum Fisher information

- Basic definitions
- Entanglement detection with the variance
- Entanglement detection with the quantum Fisher information

- Generalized variance
- Generalized quantum Fisher information
- Generalized quantities in the literature

- Two properties of the QFI are used:
 - For pure states, it is $4(\langle A^2 \rangle_{\Psi} \langle A \rangle_{\Psi}^2)$.
 - It is convex.
- Any other quantity with these propeties could be used instead of the QFI.
- If it were larger than the usual quantum Fisher information, then it would even be better for this purpose.
- [L. Pezze and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).]

Motivation

• Why variance and the quantum Fisher information are important?

Variance and quantum Fisher information

- Basic definitions
- Entanglement detection with the variance
- Entanglement detection with the quantum Fisher information

- Generalized variance
- Generalized quantum Fisher information
- Generalized quantities in the literature

Generalized variance

Definition 1. Generalized variance $var_{\rho}(A)$ is defined as follows.

1 For pure states, we have

$$\operatorname{var}_{\Psi}(A) = (\Delta A)^2_{\Psi}.$$

2 For mixed states, $var_{\varrho}(A)$ is concave in the state.

Definition 2. The minimal generalized variance $var_{\varrho}^{min}(A)$ is defined as follows.

For pure states, it equals the usual variance

$$\operatorname{var}_{\Psi}^{\min}(A) = (\Delta A)^2_{\Psi},$$

Is For mixed states, it is defined through a concave roof construction

$$\operatorname{var}_{\varrho}^{\min}(A) = \sup_{\{p_k, \Psi_k\}} \sum_k p_k (\Delta A)^2_{\Psi_k},$$

where

$$\varrho = \sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}|.$$

Theorem 1.

The minimal generalized variance is the usual variance

$$\operatorname{var}_{\varrho}^{\min}(A) = (\Delta A)^2_{\ \varrho}.$$

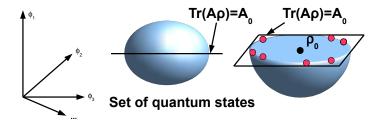
In other words, the variance its own concave roof.

Hand waving proof:

$$(\Delta A)^2_{\varrho} = \sum_k p_k (\Delta A)^2_{\Psi_k} + (\langle A \rangle_{\Psi_k -} \langle A \rangle_{\varrho})^2.$$

You can always find a decomposition such that $\langle A \rangle_{\Psi_k} = \langle A \rangle_{\varrho}$ for all *k*.

Hand waving proof, continuation; geometric argument:



For details, please see arxiv:1109.2831.

Motivation

• Why variance and the quantum Fisher information are important?

Variance and quantum Fisher information

- Basic definitions
- Entanglement detection with the variance
- Entanglement detection with the quantum Fisher information

- Generalized variance
- Generalized quantum Fisher information
- Generalized quantities in the literature

Generalized quantum Fisher information

Definition 3. Generalized quantum Fisher information $F_Q[\varrho, A]$:

1 For pure states, we have

$$F_Q[\varrho, A] = 4(\Delta A)^2_{\Psi}.$$

The factor 4 appears for historical reasons.

2 For mixed states, $F_Q[\varrho, A]$ is convex in the state.

Definition 4. Maximal quantum Fisher information F^{max}_Q[\overline{\vert}, A]:
 For pure states, it equals four times the usual variance

$$F_Q^{\max}[\varrho, A] = 4(\Delta A)^2_{\Psi}.$$

For mixed states, it is defined through a convex roof construction

$$F_Q^{\max}[\varrho,A] = 4 \inf_{\{p_k,\Psi_k\}} p_k(\Delta A)^2_{\Psi_k}.$$

Theorem 2.

For rank-2 states

$$F_Q^{\max}[\varrho, A] = F_Q^{\max}[\varrho, A].$$

For an analytic proof, see G. Tóth and D. Petz, arxiv:1109.2831.

In other words, the quantum Fisher information is four times the convex roof of the variance for rank-2 states.

Numerics for rank>2

• The maximal generalized q. Fisher information can be written as

$$F_Q^{\max}[\varrho, A] = 4 \left(\langle A^2 \rangle_{\varrho} - \sup_{\{\rho_k, |\Psi_k\rangle\}} \sum_k \rho_k \langle A \rangle_{\Psi_k}^2 \right).$$

 Rewriting the term quadratic in expectation values as an operator acting on a bipartite system

$$F_{Q}^{\max}[\varrho, A] = 4 \bigg(\langle A^2 \rangle_{\varrho} - \sup_{\{ \rho_k, |\Psi_k \rangle\}} \sum_k p_k \langle A \otimes A \rangle_{\Psi_k \otimes \Psi_k} \bigg).$$

Further transformations lead to

$$F_{Q}^{\max}[\varrho, A] = 4 \left(\langle A^2 \rangle_{\varrho} - \sup_{\{ \rho_k, |\Psi_k \rangle\}} \langle A \otimes A \rangle_{\sum_k \rho_k |\Psi_k \rangle \langle \Psi_k |^{\otimes 2}} \right).$$

Hence we obtain that

$$\mathcal{F}_{Q}^{\max}[\varrho, A]_{\cdot} = 4 \bigg(\langle A^{2} \rangle_{\varrho} - \sup_{\substack{\varrho_{ss} \in S_{s}, \\ \operatorname{Tr}_{1}(\varrho_{ss}) = \varrho}} \langle A \otimes A \rangle_{\varrho_{ss}} \bigg),$$

where S_s are symmetric separable states.

- Instead of the separable states, we can do the optimization for PPT states or states with a PPT symmetric extension.
- Extensive numerics on random ρ and A confirm that

 $F_Q = F_Q^{max}$

holds within a large degree of accuracy.

Motivation

• Why variance and the quantum Fisher information are important?

Variance and quantum Fisher information

- Basic definitions
- Entanglement detection with the variance
- Entanglement detection with the quantum Fisher information

- Generalized variance
- Generalized quantum Fisher information
- Generalized quantities in the literature

Generalized variance and quantum Fisher information in the literature

- Generalized variances and quantum Fisher informations of D. Petz.
- Defines a variance and a corresponding quantum Fisher information for each standard matrix monotone function *f* : ℝ⁺ → ℝ⁺.
- *Surprisingly*, his variances and quantum Fisher information definitions fit the definitions of this presentation.
- Our quantities are extremal even within the sets defined by Petz et al. However, our definitions are broader.
- D. Petz, *Quantum Information Theory and Quantum Statistics* (Springer, 2008).
- D. Petz, J. Phys. A: Math. Gen. 35, 79 (2003).
- P. Gibilisco, F. Hiai and D. Petz, IEEE Trans. Inform. Theory 55, 439 (2009).
- F. Hiai and D. Petz, From quasi-entropy, http://arxiv.org/abs/1009.2679.

Conjecture

Conjecture

We conjecture that

$$F_Q = F_Q^{max}$$

for density matrices of any rank and for any HermitianA.

Conjecture based on

- Analytics for rank 2
- Extensive numerics for rank>2
- Statement is true for a large subset

Follow-up

- Proof: Sixia Yu, arxiv 1302.5311.
- We should look for connections to

[B.M. Escher, R.L.de Matos Filho, and L. Davidovich, Nature Phys. (2011)].

Summary

- We defined the generalized variance and the generalized quantum Fisher information.
- We found that the variance is its own concave roof, while the quantum Fisher information is its own convex roof.

See: G. Tóth and D. Petz,

Extremal properties of the variance and the quantum Fisher information, Phys. Rev. A, in press; arxiv:1109.2831.

THANK YOU FOR YOUR ATTENTION!

uropean esearch

