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Motivation

Symmetry is a central concept in quantum mechanics. Typically, the
presence of some symmetry simplifies our calculations in physics.

A particular type of symmetry, permutational symmetry appears in
many systems studied in quantum optics.

The separability problem is proven to be a very hard one. Thus, it is
interesting to ask how permutational symmetry can simplify the
separability problem.
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Two types of symmetries

Consider two d-dimensional quantum systems. We will examine two types
of permutational symmetries, denoting the corresponding sets by I and
S :

1 We call a state permutationally invariant (or just invariant, % ∈ I) if % is
invariant under exchanging the particles. That is, F%F = %, where the
flip operator is F =

∑
ij |ij〉〈ji|. The reduced state of two randomly

chosen particles of a larger ensemble has this symmetry.

2 We call a state symmetric (% ∈ S) if it acts on the symmetric subspace
only. This is the state space of two d-state bosons.

Clearly, we have S ⊂ I.
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Expectation value matrix

Definition
Expectation value matrix of a bipartite quantum state is

ηkl(%) := 〈Mk ⊗Ml〉%,

where Mk ’s are local orthogonal observables for both parties, satisfying

Tr(Mk Ml) = δkl .
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Equivalence of several entanglement conditions for
symmetric states
Observation 1. Let % ∈ S be a symmetric state. Then the following
separability criteria are equivalent:

1 % has a positive partial transpose (PPT), %TA ≥ 0.

2 % satisfies the Computable Cross Norm-Realignment (CCNR)
criterion, ‖R(%)‖1 ≤ 1, where R(%) is the realignment map and ‖...‖1 is
the trace norm.

3 η ≥ 0, or, equivalently 〈A ⊗ A〉 ≥ 0 for all observables A .

4 The correlation matrix, defined via the matrix elements as

Ckl := 〈Mk ⊗Ml〉 − 〈Mk ⊗ 1〉〈1 ⊗Ml〉

is positive semidefinite: C ≥ 0. [A.R. Usha Devi et al., Phys. Rev. Lett. 98, 060501 (2007).]

5 The state satisfies several variants of the Covariance Matrix Criterion
(CMC). Latter are strictly stronger than the CCNR criterion for
non-symmetric states. 8 / 19



Proof of Observation 1: Covariance Matrix Criterion

Variants of the Covariance Matrix Criterion:

‖C‖21 ≤ [1 − Tr(%2
A )][1 − Tr(%2

B)]

or
2
∑
|Cii | ≤ [1 − Tr(%2

A )] + [1 − Tr(%2
B)].

[O. Gühne et al., PRL 99, 130504 (2007); O. Gittsovich et al., PRA 78, 052319 (2008).]

If % is symmetric, the fact that C is positive semidefinite gives
‖C‖1 = Tr(C) =

∑
Λk −

∑
k Tr(%A Mk )2 = 1 − Tr(%2

A ) and similarly,∑
i |Cii | =

∑
i Cii = 1 − Tr(%2

A ).

Hence, a state fulfilling C ≥ 0 fulfills also both criteria. On the other
hand, a state violating C ≥ 0 must also violate these criteria, as they
are strictly stronger than the CCNR criterion
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Are there symmetric bound entangled states?

For symmetric states,
1 CCNR,
2 η ≥ 0,
3 C ≥ 0 and
4 CMC

are equivalent to the PPT criterion.

It is then quite hard to find symmetric PPT entangled states.

Do symmetric bound entangled states exist at
all?
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Symmetric bound entangled states

Breuer presented, for even d ≥ 4, a single parameter family of bound
entangled states that are I symmetric

%B = λ|Ψd
0〉〈Ψ

d
0 |+ (1 − λ)Πd

s .

[H.-P. Breuer, PRL 97, 080501 (2006); see also K.G.H. Vollbrecht and M.M. Wolf, PRL 88, 247901 (2002).]

The state is PPT entangled for 0 ≤ λ ≤ 1/(d + 2). Here |Ψ0〉 is the
singlet state and Πs is the normalized projector to the symmetric
subspace.

Idea to construct bound entangled states with an S-symmetry: We
embed a low dimensional entangled state into a higher dimensional
Hilbert space, such that it becomes symmetric, while it remains
entangled.
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An 8 × 8 symmetric bound entangled states

We consider the symmetric state

%̂ = λΠd2
a ⊗ |Ψ

d
0〉〈Ψ

d
0 |+ (1 − λ)Πd2

s ⊗ Πd
s .

B

s /a

Here, Πd2
a and Πd2

s are normalized projectors to the two-qudit
symmetric/antisymmetric subspace with dimension d2. Thus, %̂ is
symmetric.

If the original system is of dimension d × d then the system of %̂ is of
dimension dd2 × dd2. Since %B is the reduced state of %̂, if the first is
entangled, then the second is also entangled.

For d2 = 2 and d = 4, numerical calculation shows that %̂ is PPT for
λ < 0.062.

This provides an example of an S symmetric bound entangled state of size
8 × 8.
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Symmetric bound entangled state via numerics–
Basic idea

Let us consider an N-qubit symmetric state, that is, a state of the
symmetric subspace. We consider even N.

It is known that such a state is either separable with respect to all
bipartitions or it is entangled with respect to all bipartitions.

Thus any state that is PPT with respect to the N
2 : N

2 partition while
NPT with respect to some other partition is bound entangled with
respect to the N

2 : N
2 partition.

PPT

NPT

Since the state is symmetric, it can straightforwardly be mapped to a
( N

2 + 1) × ( N
2 + 1) bipartite symmetric state.
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Symmetric bound entangled state via numerics II

To obtain such a multiqubit state, one has to first generate an initial
random state % that is PPT with respect to the N

2 : N
2 partition.

Then, we compute the minimum nonzero eigenvalue of the partial
transpose of % with respect to all other partitions

λmin(%) := min
k

min
l
λl(%

TIk ).

If λmin(%) < 0 then the state is bound entangled with respect to the
N
2 : N

2 partition. If it is non-negative then we start an optimization
process for decreasing this quantity.

We generate another random density matrix ∆%, and check the
properties of

%′ = (1 − ε)% + ε∆%, (1)

where 0 < ε < 1 is a small constant. If %′ is still PPT with respect to
the N

2 : N
2 partition and λmin(%′) < λmin(%) then we use %′ as our new

random initial state %.
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3 × 3 symmetric bound entangled state
Repeating this procedure, we obtained a four-qubit symmetric state
this way

%BE4 =


0.22 0 0 −0.059 0

0 0.176 0 0 0
0 0 0.167 0 0

−0.059 0 0 0.254 0
0 0 0 0 0.183


.

The basis states are |0〉 := |0000〉, |1〉 := sym(|1000〉),
|2〉 := sym(|1100〉), ...

The state is bound entangled with respect to the 2 : 2 partition. This
corresponds to a 3 × 3 bipartite symmetric bound entangled state,
demonstrating the simplest possible symmetric bound entangled
state.
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Five- and six-qubit fully PPT entangled states

Our method can be straightforwardly generalized to create
multipartite bound entangled states of the symmetric subspace, such
that all bipartitions are PPT (“fully PPT states”).

We found such a state for five and six qubits.

Note that these states are both fully PPT and genuine multipartite
entangled. It is further interesting to relate this to the Peres
conjecture, stating that fully PPT states cannot violate a Bell
inequality.
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Conclusions

In summary, we have discussed entanglement in symmetric systems.

We showed that for states that are in the symmetric subspace several
relevant entanglement conditions, especially the PPT criterion, the
CCNR criterion, and the criterion based on covariance matrices
matrices, coincide.

We proved the existence of symmetric bound entangled states, in
particular, a 3 × 3, five-qubit and six-qubit symmetric PPT entangled
states.

See G. Tóth and O. Gühne, arxiv:0812.4453.

*** THANK YOU ***
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