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Outline

Motivation – The definition of collective measurement.

Criterion I: Detects entangled states close to a cluster 
state with an entanglement witness.

Criterion II: Similar as the previous, but it uses an uncertainty
relation instead of an entanglement witness.

Criterion III: Detects states close to a many-body singlet 
using uncertainty relations



Objectives

We would like to detect entanglement in a spin chain or
in a 1D lattice of two-state bosonic atoms without the
possibility of individual access to spins/lattice sites.

We can measure only collective quantities, 
i.e., the sum of single system measurement 
results. 

We can execute only the same single qubit 
operation on all the qubits.

We have a simple nearest-neighbor 
interaction, which is uniform over the lattice. 3
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What can be measured in this system?

x/y/z components of the collective angular momentum

Knowing <Jx>, <Jy> and <Jz> is not enough for
entanglement detection since for arbitrary values of these
three there is a corresponding separable state. 

We have two choices: 

(i) We need a multi-qubit dynamics before measuring <Jx/y/z>

(ii) We need higher moments of Jx/y/z
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Criterion 1: detecting the cluster state 
with a preceding quantum dynamics I

Necessary condition for separability for a spin chain with
an entanglement witness:
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Later it will be explained how to measure the third order correlation 
terms with dynamics + a simple collective measurement.

The criterion is maximally violated for cluster states.

Method: entanglement witness          #atoms/site:1
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Proof of Criterion I

If it is true for a product state, then it is also 
true for an separable state since (*) is linear
in operator expectation values. 

For an entangled state:

(*)

2kJ ≤

Consider the following sum of two consecutive terms: 



1kJ ≤

J N≤

End of Proof for Criterion I
For a separable quadruplet

Jk involves spin (k-1), (k), (k+1) and (k+2). Hence

Q.E.D. Comment: for an entangled state
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The number of entangled quadruplets is proportional to (J-N/2).
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Entanglement quantification: overlapping quadruplets

If the kth quadruplet is separable then Jk<1. If it is
entangled then Jk<2.
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Number of entangled quadruplets:

The number of entangled overlapping quadruplets can be 
deduced as

The lower bound for the number of non-overlapping
entangled quadruplets is half of this
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Q.: What state do we detect?
A.: The cluster state.
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z x z cluster k clusterσ σ σ λ− + Ψ = Ψ

The cluster state is defined through the following eigenvalue
equations:

where

With our criterion we detect cluster states with λk=+1.

A cluster state can be created with simple Ising chain dynamics.

1kλ = ±



afterΨbeforeΨ
UPG

We would like to know
whether this state
is entangled

We measure Jx after 
executing UPG

How to measure J with preceding interaction



How to measure J with preceding interaction II

We can measure J by measuring Jx after the dynamics UPG.
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UPG describes the application of the phase gate for all 
neighboring spins.
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Experiments with the lattice of two-state
bosonic atoms

The cluster state was created experimentally at LMU 
(Mandel, Greiner, Widera, Rom, Hänsch, Bloch, 
quant-ph/0308080). 

The presence of the many-body entanglement 
was deduced from the disappearance of the interference
pattern, when the atoms corresponding to one of the two 
species were detected after a free expansion.



Criterion 2: detecting the cluster state 
with a preceding quantum dynamics
Method: uncertainties                 # of atoms/site: 1

For separable states:

It follows also that:
(Similarly as in 
O. Gühne,
quant-ph/0306194)

Hence for the variances:
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Criterion 2: detecting the cluster state 
with a preceding quantum dynamics II
Collective measurement scheme. Necessary condition for 
separability

where

Comments:
● For this scheme, one needs the partitioning of the spins.
● Interesting, since the expression is not an entanglement witness, 
but a criterion nonlinear in expectation values. (O. Gühne, quant-
ph-0306194, H. Hofmann, PRA 68, 032103(2003) + quant-
ph/0212090)
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Method: uncertainties                 # of atoms/site: can vary

Criterion 3: detecting the many-body singlet
without a preceding quantum dynamics,
based on higher order moments
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Necessary condition for separability:

The condition is maximally violated for many-body
singlets with zero total angular momentum.



Criterion 3: Proof
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Uncertainty relation for spin (k) 

For a product state single system uncertainties 
add up and we obtain:
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It is easy to see that this is also true for separable states 
[H. Hofmann, PRA 68, 032103(2003) + quant-ph/0212090;
C. Simon, D. Bouwmeester, quant-ph/0302023 + PRA]. Q.E.D.



Definition of entanglement if the particle number
varies on the lattice

The jx/y/z operators are Schwinger type angular
momentum operators defined as

Here ak and bk are the destruction operators corresponding 
to the two internal states of the atoms.
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Definition of entanglement if the particle number
varies on the lattice II

How to describe a state of a lattice site
in this mode picture? Let us use for labeling

Examples:

, zj j

1 1,
2 2

↑ = + +

0 0 , 0=

1 1,
2 2

↓ = + −



Definition of entanglement if the particle number
varies on the lattice III

Based on the previous formalism, two lattice sites
can be in the state

which is clearly an entangled state. But the following 
single particle state looks also entangled:

This is a general characteristic of the “mode picture“
in contrast to the “particle picture“.

↓ ↓ + ↑ ↑

0 0↑ + ↑



Definition of entanglement if the particle number
varies on the lattice IV

Good news: our criterion does not detect the 

state as entangled. 

Reason: Jx/y/z commute with the local particle number 
operators Nk. 

Thus a criterion with Jx/y/z cannot distinguish between
the superposition or the mixture of states having 
different number of particles at the lattice sites.

0 0↑ + ↑



Criterion 3: What kind of states do we detect?

The criterion is maximally violated for states with total 
angular momentum zero (many-body singlets). They 
are the ground states of the Hamiltonian:

The ground state of the anti-ferromagnetic Heisenberg 
chain also gives maximal violation 
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Criterion 3: What kind of states do we detect? II

A spin chain can be driven into substantial violation of 
the inequality with a simple dynamics.

For example, a dynamics under the following 
Hamiltonian results in a 50% violation of the criterion 
for N=6 spins

starting out from the initial state
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Comparison with the spin squeezing criterion

The spin squeezing criterion (Sørensen et. al. , Nature 
409, 63 (2001)) is another criterion making the 
detection of many-body entanglement possible with 
collective measurement. For separable states 

Our methods have the following advantages: 
● Can detect useful quantum states with J=0 (i.e., 
cluster state, singlet)
● Criterion III: Can distinguish between on-site and 
inter-site entanglement and detects only the latter
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Moments of the cluster state vs. moments of the 
totally mixed state 

The moments of Jx, Jy and Jz for a (large enough) cluster 
state are the same as for the totally mixed state.

Separable states can also be constructed whose second oder
moments are the same as for the cluster state for any angular 
momentum component.

Thus it is hard to detect the cluster state as entangled
without a preceding quantum dynamics, based only
on the measurement of moments.
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Summary quant-ph/0310039
Motivation – The definition of collective measurement.

Criterion I:
● Detects entangled states close to a cluster state.
● Needs multi-qubit dynamics before measurement.
● Based on an entanglement witness.

Criterion II:
● Similar to the previous method but based on an uncertainty relati

Criterion III:

● Detects a many-body singlet using uncertainty relations.
● Does not need preceding quantum dynamics.

Detection of cluster state: to detect it as entangled, one needs
a preceding multi-qubit dynamics.  



Extra slides



Moments of the totally mixed state

The totally mixed state is defined as

The second order moments are computed as

This term is 1 if k=l, otherwise it is 0.

Only those terms are nonzero, for which we have
the Pauli spin matrices on an even power.
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Moments of the cluster state I.

The moments of Jx, Jy and Jz for a (large enough) 
cluster state are the same as for the totally mixed state. 

How do we compute the moments for a cluster state?

This term is also 1 if k=l, otherwise it is 0 if  N>3.
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Moments of the cluster state II.

However, not all moments of a cluster state are the same
as for a totally mixed state. Reason:

For N>7 only those terms are nonzero, for which we have
the Pauli spin matrices on an even power (as for the totally 
mixed state). But for N<8 this is not true.

In general, for a cluster state of N qubits, all 
moments of Jx/y/z up to order m<(N+1)/2 are the 
same, as for the totally mixed state.
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