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Motivation

In many quantum control experiments the qubits cannot be
individually addressed. We still would like to create and detect
entanglement.

Entanglement creation and detection is possible through spin
squeezing. We will use the ideas behind the spin squeezing approach
in order to

Create and detect entanglement between particles with arbitrarily large
spin

Engineer quantum states other than the classical spin squeezed state
with a large spin, that is, unpolarized states.

Generalize the Gaussian approach for describing the dynamics leading
to such states.
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From squeezing to spin squeezing

The variances of the two quadrature components are bounded

(∆x)2(∆p)2 ≥ const .

Coherent states saturate the inequality.

Squeezed states are the states for which one of the quadrature
components have a smaller variance than for a coherent state.

x

p

x

p

Can one use similar ideas for spin systems?
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Spin squeezing

Definition
The variances of the angular momentum components are bounded

(∆Jx)2(∆Jy)2 ≥ 1
4 |〈Jz〉|

2,

where the mean spin points to the z direction. If (∆Jx)2 is smaller than the
standard quantum limit |〈Jz〉|

2 then the state is called spin squeezed.

In practice this means that the angular momentum of the state has a
small variance in one direction, while in an orthogonal direction the
angular momentum is large.
[M. Kitagawa and M. Ueda, PRA 47, 5138 (1993).]
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Entanglement

Definition
Fully separable states are states that can be written in the form

ρ =
∑

l

plρ
(1)
l ⊗ ρ

(2)
l ⊗ ... ⊗ ρ

(N)
l ,

where
∑

l pl = 1 and pl > 0.

Definition
A state is entangled if it is not separable.
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The standard spin-squeezing criterion

Definition
The spin squeezing criterion for entanglement detection is

(∆Jx)2

〈Jy〉
2 + 〈Jz〉

2
≥

1
N
.

If it is violated then the state is entangled.
[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

Note that this criterion is for spin-1/2 particles.

States violating it are like this:

J
z
 is large

Variance of J
x 
is small

z

y
x
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A generalized spin squeezing entanglement criterion

Separable states of N spin-j particles must fulfill

ξ2
s := (∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ Nj.

It is maximally violated by a many-body singlet, e.g., the ground state of an
anti-ferromagnetic Heisenberg chain.
[GT, PRA 69, 052327 (2004);GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007).]

For such a state
〈Jm

k 〉 = 0.

Nξ2
s gives an upper bound on the number of unentangled spins.

ξ2
s characterizes the sensitivity to external fields acting as

U = exp(iφJn). ξs = 0 corresponds to complete insensitivity.
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Many-body singlet states

Many-body singlet states have been studied a lot in condensed matter
physics and quantum information science. They can be created typically in
Heisenberg lattices.

Here we realize singlets without two-spin interactions or waiting for a
Heisenberg system to settle in ground state.

Ours is the permutationally invariant singlet. For the qubit case, the
bipartite entanglement of such a state is known.

Surprisingly, this state appears even in quantum gravity calculations
of black hole entropy. [E.R. Livine, and D.R. Terno, Phys. Rev. A. 72, 022307 (2005).]

Such singlet states might be used in cases when it is important that
the system is insensitive to the effect of the homogenous fields. (e.g.,
measuring field gradient, storing information in the decoherence free
subspace).
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Permutationally invariant singlet

Our singlet is the equal mixture of all permutations of a pure singlet
state.
For qubits, it is the mixture of all chains of two-qubit singlets:

Such a state has intriguing properties ...
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The physical system: atoms + light

We consider atoms interacting with light. [B. Julsgaard, A. Kozhekin, and E.S. Polzik, Nature

413, 400 (2001); S.R. de Echaniz, M.W. Mitchell, M. Kubasik, M. Koschorreck, H. Crepaz, J. Eschner, and E.S. Polzik, J. Opt. B

7, S548 (2005); J. Appel, P.J. Windpassinger, D. Oblak, U.B. Hoff, N. Kjaergaard, and E.S. Polzik, arXiv:0810.3545.]

The light is then measured and the atoms are projected into an
entangled state.

MeasurementLaser

feedback
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Quantum non-demolition measurement (QND) of the
ensemble

The steps the the QND measurement of Jk :

1. Set the light to
〈S〉 = (S0, 0, 0).

2. The atoms interact with the light for time t

H = ΩJk Sz

3. Measurement of Sy .

The most obvious effect of such a measurement is the decrease of
(∆Jk )2.

The timescale of the dynamics, for J := Nj, is

t ∼ τ :=
1

Ω
√

S0J
.
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The proposed protocol

1 Initial state
Atoms

%0 :=
1

(2j + 1)N

Light
〈S〉 = (S0, 0, 0).

2 Measurement of Jx + feedback or postselection.
3 Measurement of Jy + feedback or postselection.
4 Measurement of Jz + feedback or postselection.

We consider 106 spin-1 87Rb atoms and S0 = 0.5 × 108.

Initial state of the atoms has (∆Jk )2 ∼ N for k = x, y, z.

After squeezing, we obtain ξs < 1.

Thus, we get a state close to a singlet state.
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Gaussian states
Gaussian states are quantum states for which all third and higher
order correlations are trivial.

Continuous variable systems: The dynamics of Gaussian systems
can be followed by writing down dynamical equations for the
covariance matrix and the expectation values of xk and pk . For a
single mode, this matrix looks like

Γxp ∝

(
〈x2〉 − 〈x〉2 〈xp + px〉/2 − 〈x〉〈p〉

〈xp + px〉/2 − 〈x〉〈p〉 〈p2〉 − 〈p〉2

)
Spin systems: Such ideas can be used if one of the spin components
is large. Then the other two components behave like x and p
operators.
We extend this approach to states for which the spin is not large. Our
covariance matrix for a single spin is

ΓJ ∝

 〈∆Jx∆Jx〉 〈(∆Jy∆Jx)sym〉 〈(∆Jz∆Jx)sym〉

〈(∆Jx∆Jy)sym〉 〈∆Jy∆Jy〉 〈(∆Jz∆Jy)sym〉

〈(∆Jx∆Jz)sym〉 〈(∆Jy∆Jz)sym〉 〈∆Jz∆Jz〉

 .

17 / 26



Gaussian states
Gaussian states are quantum states for which all third and higher
order correlations are trivial.
Continuous variable systems: The dynamics of Gaussian systems
can be followed by writing down dynamical equations for the
covariance matrix and the expectation values of xk and pk . For a
single mode, this matrix looks like

Γxp ∝

(
〈x2〉 − 〈x〉2 〈xp + px〉/2 − 〈x〉〈p〉

〈xp + px〉/2 − 〈x〉〈p〉 〈p2〉 − 〈p〉2

)

Spin systems: Such ideas can be used if one of the spin components
is large. Then the other two components behave like x and p
operators.
We extend this approach to states for which the spin is not large. Our
covariance matrix for a single spin is

ΓJ ∝

 〈∆Jx∆Jx〉 〈(∆Jy∆Jx)sym〉 〈(∆Jz∆Jx)sym〉

〈(∆Jx∆Jy)sym〉 〈∆Jy∆Jy〉 〈(∆Jz∆Jy)sym〉

〈(∆Jx∆Jz)sym〉 〈(∆Jy∆Jz)sym〉 〈∆Jz∆Jz〉

 .

17 / 26



Gaussian states
Gaussian states are quantum states for which all third and higher
order correlations are trivial.
Continuous variable systems: The dynamics of Gaussian systems
can be followed by writing down dynamical equations for the
covariance matrix and the expectation values of xk and pk . For a
single mode, this matrix looks like

Γxp ∝

(
〈x2〉 − 〈x〉2 〈xp + px〉/2 − 〈x〉〈p〉

〈xp + px〉/2 − 〈x〉〈p〉 〈p2〉 − 〈p〉2

)
Spin systems: Such ideas can be used if one of the spin components
is large. Then the other two components behave like x and p
operators.
We extend this approach to states for which the spin is not large. Our
covariance matrix for a single spin is

ΓJ ∝

 〈∆Jx∆Jx〉 〈(∆Jy∆Jx)sym〉 〈(∆Jz∆Jx)sym〉

〈(∆Jx∆Jy)sym〉 〈∆Jy∆Jy〉 〈(∆Jz∆Jy)sym〉

〈(∆Jx∆Jz)sym〉 〈(∆Jy∆Jz)sym〉 〈∆Jz∆Jz〉

 .
17 / 26



Covariance matrix

We define the set of operators

R = { Jx√
J
,

Jy
√

J
, Jz√

J
, Sx√

S
,

Sy
√

S
, Sz√

S
}

and covariance matrix as

Γmn := 〈RmRn + RnRm〉/2 − 〈Rm〉〈Rn〉.

For short times, the dynamics of an operator O0 is given by

OP = O0 − it [O0,H],

where we assumed ~ = 1.
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Covariance matrix II

Consider dynamics for t ∼ τ := 1
Ω
√

JS0
.

Hence, for the unitary dynamics one arrives to

ΓP = MΓ0MT , (1)

where M is the identity matrix, apart from M5,1 = 〈Sx 〉

S0
κ, and

κ := t/τ = Ωt
√

JS0.

The measurement of the light can be modeled with a projection

ΓM = ΓP − ΓP(PyΓPPy)MPΓT
P , (2)

where MP denotes the Moore-Penrose pseudoinverse, and Py is
(0, 0, 0, 0, 1, 0). [G. Giedke and J.I. Cirac, Phys. Rev. A 66, 032316 (2002).]
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Spin squeezing dynamics (top curve, solid)
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Modeling losses

The dynamics of the covariance matric for the case of losses

Γ′P = (1 − ηD)MΓ0MT (1 − ηD) + η(2 − η)DΓnoise,

where D = diag(1, 1, 1, 0, 0, 0) and Γnoise = diag( 2
3 ,

2
3 ,

2
3 , 0, 0, 0).

η the fraction of atoms that decoherence during the QND process.

The losses are connected to κ through

η = Qκ2/α,

where α is the resonant optical depth of the sample and Q = 8
9

[L.B. Madsen and K. Mølmer, Phys. Rev. A 70, 052324 (2004).]
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Spin squeezing dynamics: α = 50, 75, 100 (dotted)
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Exact model

Results: for t ∼ τ × N
1
4 the variances decrease to ∼

√
N, while for

t ∼ τ ×
√

N the variances reach ∼ 1, which we call the von Neumann limit.

Straightforward simulation of the quantum dynamics of million atoms
is not possible.

However, in the large N limit, a formalism can be obtained that
replaces sums by integrals.

This approach works also for the regime in which the Gaussian
approximation is no more valid.

Comparison with exact model is possible for an initial state for which
half of the spins are in the |+ 1〉x state, half of them are in the | − 1〉x
state.

24 / 26



Spin squeezing dynamics (bottom curve, dots)
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Conclusions

We presented a method for creating and detecting entanglement in
an ensemble of atoms with spin j > 1

2 .

Our experimental proposal aims to create a many-body singlet state
through squeezing the uncertainties of the collective angular
momenta.

We showed how to use an extension of the usual Gaussian formalism
for modeling the experiment.

Presentation based on: GT and M.W. Mitchell, arxiv:0901.4110.

*** THANK YOU ***
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