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0 Motivation
@ Why quantum tomography is important?
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Why tomography is important?

@ Many experiments aiming to create many-body entangled states.

@ Quantum state tomography can be used to check how well the
state has been prepared.

@ However, the number of measurements scales exponentially with
the number of qubits.



e Quantum experiments with multi-qubit systems
@ Physical systems
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Physical systems

State-of-the-art in experiments

@ 14 qubits with trapped cold ions
T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M.
Harlander, W. Haensel, M. Hennrich, R. Blatt, arxiv:1009.6126, 2010.

@ 10 qubits with photons
W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gihne, A. Goebel, Y.-A. Chen, C.-Z.
Peng, Z.-B. Chen, J.-W. Pan, Nature Physics, 6, 331 (2010).




e Quantum experiments with multi-qubit systems

@ Local measurements
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Only local measurements are possible

Definition
A single local measurement setting is the basic unit of experimental
effort.

A local setting means measuring operator A¥) at qubit k for all qubits.

A(1) A(2) A A(N)

@ All two-qubit, three-qubit correlations, etc. can be obtained.

(AW AR (AM AB)Y (AM AR AB)Y. .



e Full quantum state tomography
@ Basic ideas and scaling
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Full quantum state tomography

@ The density matrix can be reconstructed from 3N measurement
settings.

For N = 4, the measurements are

1 X X X X
2 X X XY
3 X X X Z

o

@ Note again that the number of measurements scales exponentially
in N.



e Full quantum state tomography

@ Experiments
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Experiments with ions and photons

HHHH

@ H. Haeffner, W. Haensel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T.
Koerber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gihne, W. Dir, R.
Blatt, Nature 438, 643-646 (2005).

@ N. Kiesel, C. Schmid, G. To6th, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98,
063604 (2007).



e Full quantum state tomography

@ Approaches to solve the scalability problem
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Approaches to solve the scalability problem

@ If the state is expected to be of a certain form (MPS), we can

measure the parameters of the ansatz.
S.T. Flammia et al., arxiv:1002.3839; M. Cramer, M.B. Plenio, arxiv:1002.3780;
O. Landon-Cardinal et al., arxiv:1002.4632.

@ If the state is of low rank, we need fewer measurements.
D. Gross et al., Phys. Rev. Lett. 105, 150401 (2010).

@ We make tomography in a subspace of the density matrices (our
approach).



0 Permutationally invariant tomography
@ Main results
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Permutationally invariant part of the density matrix

Permutationally invariant part of the density matrix:

’
OPL= Jy Z ”anL’

where T, are all the permutations of the qubits.

@ Related literature: Reconstructing op; for spin systems.
[G. M. D’Ariano et al., J. Opt. B 5, 77 (2003).]

@ Photons in a single mode optical fiber are always in a
permutationally invariant state. Small set of measurements are

needed for their characterization (experiments).
[R.B.A. Adamson et al., Phys. Rev. Lett. 98, 043601 (2007); R.B.A. Adamson et
al., Phys. Rev. A 2008; L. K. Shalm et al., Nature 457, 67 (2009).]



Permutationally invariant part of the density matrix
Il

Examples for permutationally invariant quantum states:

@ States of the symmetric subspace, like

(100y + [11))/ V2.
@ States of the anti-symmetric subspace, like
(101) = [10))/ V2.

@ Mixture of such states.
@ White noise :
S (1001 111 oM.

@ Symmetric Dicke states mixed with white noise.




Features of our method:

@ Is for spatially separated qubits.

© Needs the minimal number of measurement settings.

© Uses the measurements that lead to the smallest uncertainty
possible of the elements of pp;.

© Gives an uncertainty for the recovered expectation values and
density matrix elements.

Q@ If opy is entangled, so is 0. Can be used for entanglement
detection!




Measurements

@ We measure the same observable A; on all qubits. (Necessary for
optimality.)

Al A | A A

] ] ] J

@ Each qubit observable is defined by the measurement directions
gjusing Aj=aj X +aj,Y+a,Z

Number of measurement settings:

= (N> +3N +2).

N+2 1
=)




What do we get from the measurements?

Which quantities do we need:

We obtain the expectation values for

(AN g 15y

forj=1,2,.,.Dyand n=0,1,...N.

For example, for N = 3 we have
(A1l +10A1+118A)),

(AAARL+ 1A RA +AR®LRA),
(Aj®Aj®Aj).



How do we obtain the Bloch vector elements?

A Bloch vector element can be obtained as

Dy
(XY eZ2Me 1M =y X x (AN @ 1)),
j=1 ——
Bloch vector elements coefficients Measured data

@ Coefficients are not unique if n > 0.



Uncertainties

The uncertainty of the reconstructed Bloch vector element is

Dy
82[(X®k o Y® o 7%Mg Il@n)PI] _ Z |C}k’l’m)|282[(A?(N_n) ® 1®n)PI]-
=

@ For a fixed set of A;, we have a formula to find the c}k”’m)’s giving

the minimal uncertainty.



Optimization for A;

@ We have to find Dy measurement directions &; on the Bloch
sphere minimizing the variance

N!
(Etotal)® = Z E[(X* & Y @ Z°™ & 1°")p | X (m)
k+I4+m+n=N



Summary of algorithm

Obtaining the "total uncertainty” for given measurements

co. the state we expeCt} = BOX#1 = (S’

Aj, what we measure

Evaluating the experimental results

Bloch vector elements
variances

measurement results

A } = BOX#2 = {




How much is the information loss?

Estimation of the fidelity F(o, opr) :

F(o.0p1) > (Ps)2 = (Po)2
where P; is the projector to the N-qubit symmetric subspace.

@ F(o,0p1) can be estimated only from gpy!

@ Proof: using the theory of angular momentum for qubits.

@ Similar formalism appear concerning handling multi-copy qubit
states:
[ J. I. Cirac, A. K. Ekert, C. Macchiavello, Optimal purification of single qubits
PRL 1999. ]

[ E. Bagan et al., PRA 2006;
G. Sentis, E. Bagan, J. Calsamiglia, R. Mufioz-Tapia, Multi-copy programmable
discrimination of general qubit states, PRA 2010. ]



0 Permutationally invariant tomography

@ Example: XY Pl tomography
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Simple example: XY Pl tomography

@ Let us assume that we want to know only the expectation values

of operators of the form
(A(9)*N)

where
A(¢) = cos(¢)ox + sin(¢)oy.

@ The space of such operators has dimension N + 1. We have to
choose {qﬁ,}’\’+1 angles for the {A; }NJr1 operators we have to
measure.



Simple example: XY Pl tomography I

@ Let us assume that we measure

N

(A2N)

forj=1,2,..,N+1.
@ Reconstructed values and uncertainties
SO
N\ __ QN
ANy = >, a” x (AN

— j=1 —— —

Reconstructed coefficients = Measured data

N+1
E[A(9)] = 21 o PEP(ARN).
j:

@ Let us assume that all of these measurements have a variance AZ2.



Simple example: XY Pl tomography lii

@ Numerical example for N = 6.

g 1
0.5 o 8 0.5
~ = ~
£ o 24 g0
-0.5] 2] //\ J -0.5)
VAVAN VAVAW
7_11 05 cos%n) 08 ! GO 2 o(rad) 4 6 __11 05 0 COS(¢H) 05 !
Random directions ¢;  Uncertainty of A(¢)®V  Uniform directions



Simple example: XY Pl tomography IV

@ Numerical example for N = 6. This random choice is even worse

1
1000
0.5] 0.5
w800
= % =
g 0 = 600 o
@400
-0.5} -0.5]
200
N 05 9 05 1 % 4 6 05 0 05 1
cos(9,) o(rad) : cos(9,) ™
Random directions ¢;  Uncertainty of A(¢)®N  Uniform directions



0 Permutationally invariant tomography

@ Example: Experiment with a 4-qubit Dicke state
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4-qubit Dicke state, optimized settings (exp.)

—
QO
=

Sym. correlation

1
T ¢ 4
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'
'
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Random settings (exp.)

—
(¢
~
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Sym. correlation
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random settings vs.
full tomogrpahy

NN~
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The measured correlations d measurement directions



Density matrices (exp.)

full tomography

b)
Pl tomography
optimized settings

)
Pl tomography
random settings

0.15
0.1
0.05

~. & ~7,’;’,Zv



Pl tomography for larger systems

@ We determined the optimal A; for p.i. tomography for
N = 4,6, ...,14. The maximal squared uncertainty of the Bloch

vector elements is

emax = Max E2[(X* & Y@ Z°" @ 1°")p]

(Total count is the same as in the experiment: 2050.)

° ° R °




Expectation values directly from measured data

@ Operator expectation values can be recovered directly from the
measurement data as

(Op) = Z Z cP(AT N @ 1),

Jj=1 n=1

where the C P are constants.

e Op= |D,(VN/2))<D,(VN/2)|, blue: og « 1, red: upper bound for any oo.

0.012
0.01
0.008

“ 0.006
0.004 ° °

0.002

G4 6 8 10 12




Comparison with other methods for efficient

tomography

@ If a state is detected as entangled, it is surely entangled. No
assumption is used concerning the form of the quantum state.

@ Expectation values of all permutationally invariant operators are
the same for o and op;.

@ Typically, it can be used in experiments in which permutationally
invariant states are created.



Comparison with other methods for efficient

tomography Il

@ Individual addressing of the qubits is not needed.

@ Thatis, it is enough ti measure the collective operator

> A

n=1

@ This has a clear advantage for many physical systems.
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@ We discussed permutationally invariant tomography for large
multi-qubits systems.

@ |t paves the way for quantum experiments with more than 6 — 8
qubits.

See:
G. Toth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and
H. Weinfurter, Permutationally invariant quantum tomography,
Phys. Rev. Lett. 105, 250403 (2010).
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How many settings we need?

@ Expectation values of (X®¢ ® Y® ® Z®™ @ 1®")p; are needed.

@ For a given n, the dimension of this subspace is D(y_p) (simple
counting).

@ Operators with different n are orthogonal to each other.

@ Every measurement setting gives a single real degree of freedom
for each subspace

@ Hence the number of settings cannot be smaller than the largest
dimension, which is Dy.
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