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Why tomography is important?

Many experiments aiming to create many-body entangled states.

Quantum state tomography can be used to check how well the
state has been prepared.

However, the number of measurements scales exponentially with
the number of qubits.
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Physical systems

State-of-the-art in experiments
14 qubits with trapped cold ions
T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M.
Harlander, W. Haensel, M. Hennrich, R. Blatt, arxiv:1009.6126, 2010.

10 qubits with photons
W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z.
Peng, Z.-B. Chen, J.-W. Pan, Nature Physics, 6, 331 (2010).
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Only local measurements are possible

Definition
A single local measurement setting is the basic unit of experimental
effort.

A local setting means measuring operator A(k) at qubit k for all qubits.

A(1) A(2) A(3) A(N)...

All two-qubit, three-qubit correlations, etc. can be obtained.

〈A(1)A(2)〉,〈A(1)A(3)〉, 〈A(1)A(2)A(3)〉...
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Full quantum state tomography

The density matrix can be reconstructed from 3N measurement
settings.

Example
For N = 4, the measurements are

1. X X X X
2. X X X Y
3. X X X Z

...
34. Z Z Z Z

Note again that the number of measurements scales exponentially
in N .
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Experiments with ions and photons

H. Haeffner, W. Haensel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T.
Koerber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, R.
Blatt, Nature 438, 643-646 (2005).

N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98,
063604 (2007).
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Approaches to solve the scalability problem

If the state is expected to be of a certain form (MPS), we can
measure the parameters of the ansatz.
S.T. Flammia et al., arxiv:1002.3839; M. Cramer, M.B. Plenio, arxiv:1002.3780;
O. Landon-Cardinal et al., arxiv:1002.4632.

If the state is of low rank, we need fewer measurements.
D. Gross et al., Phys. Rev. Lett. 105, 150401 (2010).

We make tomography in a subspace of the density matrices (our
approach).



Outline

1 Motivation
Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems
Physical systems
Local measurements

3 Full quantum state tomography
Basic ideas and scaling
Experiments
Approaches to solve the scalability problem

4 Permutationally invariant tomography
Main results
Example: XY PI tomography
Example: Experiment with a 4-qubit Dicke state

5 Extra slide 1: Number of settings

15 / 41



Permutationally invariant part of the density matrix

Permutationally invariant part of the density matrix:

%PI =
1

N!

∑
Πk%Π†k ,

where Πk are all the permutations of the qubits.

Related literature: Reconstructing %PI for spin systems.
[G. M. D’Ariano et al., J. Opt. B 5, 77 (2003).]

Photons in a single mode optical fiber are always in a
permutationally invariant state. Small set of measurements are
needed for their characterization (experiments).
[R.B.A. Adamson et al., Phys. Rev. Lett. 98, 043601 (2007); R.B.A. Adamson et
al., Phys. Rev. A 2008; L. K. Shalm et al., Nature 457, 67 (2009).]



Permutationally invariant part of the density matrix
II

Examples for permutationally invariant quantum states:
States of the symmetric subspace, like

(|00〉+ |11〉)/
√

2.

States of the anti-symmetric subspace, like

(|01〉 − |10〉)/
√

2.

Mixture of such states.
White noise

1
2N

(|0〉〈0|+ |1〉〈1|)⊗N .

Symmetric Dicke states mixed with white noise.



Main results

Features of our method:

1 Is for spatially separated qubits.

2 Needs the minimal number of measurement settings.

3 Uses the measurements that lead to the smallest uncertainty
possible of the elements of %PI.

4 Gives an uncertainty for the recovered expectation values and
density matrix elements.

5 If %PI is entangled, so is %. Can be used for entanglement
detection!



Measurements

We measure the same observable Aj on all qubits. (Necessary for
optimality.)

A
j ...A

j
A
j

A
j

Each qubit observable is defined by the measurement directions
~aj using Aj = aj ,xX + aj ,yY + aj ,zZ .

Number of measurement settings:

DN =

(
N + 2

N

)
=

1
2

(N2 + 3N + 2).



What do we get from the measurements?

Which quantities do we need:

We obtain the expectation values for

〈(A⊗(N−n)
j ⊗ 1⊗n)PI〉

for j = 1,2, ..,DN and n = 0,1, ...,N .

For example, for N = 3 we have

〈Aj ⊗ 1 ⊗ 1 + 1 ⊗ Aj ⊗ 1 + 1 ⊗ 1 ⊗ Aj〉,

〈Aj ⊗ Aj ⊗ 1 + 1 ⊗ Aj ⊗ Aj + Aj ⊗ 1 ⊗ Aj〉,

〈Aj ⊗ Aj ⊗ Aj〉.



How do we obtain the Bloch vector elements?

A Bloch vector element can be obtained as

〈(X⊗k ⊗ Y⊗l ⊗ Z⊗m ⊗ 1⊗n)PI〉︸                                   ︷︷                                   ︸ =

DN∑
j=1

c(k ,l ,m)

j︸    ︷︷    ︸ × 〈(A⊗(N−n)
j ⊗ 1⊗n)PI〉.︸                          ︷︷                          ︸

Bloch vector elements coefficients Measured data

Coefficients are not unique if n > 0.



Uncertainties

The uncertainty of the reconstructed Bloch vector element is

E2[(X⊗k ⊗ Y⊗l ⊗ Z⊗m ⊗ 1⊗n)PI] =

DN∑
j=1

|c(k ,l ,m)

j |2E2[(A⊗(N−n)
j ⊗ 1⊗n)PI].

For a fixed set of Aj , we have a formula to find the c(k ,l ,m)

j ’s giving
the minimal uncertainty.



Optimization for Aj

We have to find DN measurement directions ~aj on the Bloch
sphere minimizing the variance

(Etotal)
2 =

∑
k+l+m+n=N

E2
[
(X⊗k ⊗ Y⊗l ⊗ Z⊗m ⊗ 1⊗n)PI

]
×

(
N!

k !l!m!n!

)
.



Summary of algorithm

Obtaining the "total uncertainty” for given measurements

%0, the state we expect
Aj , what we measure

}
⇒ BOX #1 ⇒ (Etotal)

2

Evaluating the experimental results

measurement results
Aj

}
⇒ BOX #2 ⇒

 Bloch vector elements
variances



How much is the information loss?

Estimation of the fidelity F (%, %PI) :

F (%, %PI) ≥ 〈Ps〉
2
% ≡ 〈Ps〉

2
%PI
,

where Ps is the projector to the N-qubit symmetric subspace.

F (%, %PI) can be estimated only from %PI!

Proof: using the theory of angular momentum for qubits.

Similar formalism appear concerning handling multi-copy qubit
states:
[ J. I. Cirac, A. K. Ekert, C. Macchiavello, Optimal purification of single qubits
PRL 1999. ]

[ E. Bagan et al., PRA 2006;
G. Sentís, E. Bagan, J. Calsamiglia, R. Muñoz-Tapia, Multi-copy programmable
discrimination of general qubit states, PRA 2010. ]
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Simple example: XY PI tomography

Let us assume that we want to know only the expectation values
of operators of the form

〈A(φ)⊗N〉

where
A(φ) = cos(φ)σx + sin(φ)σy .

The space of such operators has dimension N + 1. We have to
choose {φj }

N+1
j=1 angles for the {Aj }

N+1
j=1 operators we have to

measure.



Simple example: XY PI tomography II

Let us assume that we measure

〈A⊗N
j 〉

for j = 1,2, ...,N + 1.

Reconstructed values and uncertainties

〈A(φ)⊗N〉︸      ︷︷      ︸ =
N+1∑
j=1

c(φ)

j︸︷︷︸ × 〈A⊗N
j 〉.︸       ︷︷       ︸

Reconstructed coefficients Measured data

E2[A(φ)] =
N+1∑
j=1

|c(φ)

j |
2E2(A⊗N

j ).

Let us assume that all of these measurements have a variance ∆2.



Simple example: XY PI tomography III

Numerical example for N = 6.
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Simple example: XY PI tomography IV

Numerical example for N = 6. This random choice is even worse
...
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4-qubit Dicke state, optimized settings (exp.)
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Random settings (exp.)
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Density matrices (exp.)



PI tomography for larger systems

We determined the optimal Aj for p.i. tomography for
N = 4,6, ...,14. The maximal squared uncertainty of the Bloch
vector elements is

ε2
max = max

k ,l ,m,n
E2[(X⊗k ⊗ Y⊗l ⊗ Z⊗m ⊗ 1⊗n)PI]

(Total count is the same as in the experiment: 2050.)
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Expectation values directly from measured data
Operator expectation values can be recovered directly from the
measurement data as

〈Op〉 =

DN∑
j=1

N∑
n=1

cOp
j ,n 〈(A

⊗(N−n)
j ⊗ 1⊗n)PI〉,

where the cOp
j ,n are constants.

Op = |D(N/2)
N 〉〈D(N/2)

N |, blue: %0 ∝ 1, red: upper bound for any %0.

4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

N

ε



Comparison with other methods for efficient
tomography

If a state is detected as entangled, it is surely entangled. No
assumption is used concerning the form of the quantum state.

Expectation values of all permutationally invariant operators are
the same for % and %PI.

Typically, it can be used in experiments in which permutationally
invariant states are created.



Comparison with other methods for efficient
tomography II

Individual addressing of the qubits is not needed.

That is, it is enough ti measure the collective operator

N∑
n=1

A(n)
j .

This has a clear advantage for many physical systems.
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Summary
We discussed permutationally invariant tomography for large
multi-qubits systems.

It paves the way for quantum experiments with more than 6 − 8
qubits.

See:
G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and

H. Weinfurter, Permutationally invariant quantum tomography,
Phys. Rev. Lett. 105, 250403 (2010).

THANK YOU FOR YOUR ATTENTION!



How many settings we need?

Expectation values of (X⊗k ⊗ Y⊗l ⊗ Z⊗m ⊗ 1⊗n)PI are needed.

For a given n, the dimension of this subspace is D(N−n) (simple
counting).

Operators with different n are orthogonal to each other.

Every measurement setting gives a single real degree of freedom
for each subspace

Hence the number of settings cannot be smaller than the largest
dimension, which is DN .
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