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Motivation

Symmetry is a central concept in quantum mechanics. Typically, the
presence of some symmetry simplifies our calculations in physics.

We consider permutational symmetry.

Can permutational symmetry simplify the separability problem?
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Two types of symmetries

Two d-dimensional quantum systems.

1 We call a state permutationally invariant (or just invariant, % ∈ I) if % is
invariant under exchanging the particles. That is,

F%F = %,

where the flip operator is F =
∑

ij |ij〉〈ji|. The reduced state of two
randomly chosen particles of a larger ensemble has this symmetry.

2 We call a state symmetric (% ∈ S) if it acts on the symmetric subspace
only.

F% = %F = %.

This is the state space of two d-state bosons.

Clearly, we have S ⊂ I.
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Connection to exchangeable states

A state is exchangeable if it can be written as

% =

∫
dµ(σ)σ⊗N .

Such a state has a symmetric extension of arbitrary number of qubits.

Two-site marginals of such states are of the form∑
k

pk%k ⊗ %k .

They are permutationally invariant and separable states.

There are permutionally invariant separable state that are not like that

% =
1
2

(%1 ⊗ %2 + %2 ⊗ %1).

[M. Fannes and C. Vandenplas, J. Phys A 39, 13843 (2006).]
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Expectation value matrix

Definition
Expectation value matrix of a bipartite quantum state is

ηkl(%) := 〈Mk ⊗Ml〉%,

where Mk ’s are local orthogonal observables for both parties, satisfying

Tr(Mk Ml) = δkl .

We can decompose the density matrix as

% =
∑

kl

ηklMk ⊗Ml .
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Equivalence of several entanglement conditions for
symmetric states
Observation 1. Let % ∈ S be a symmetric state. Then the following
separability criteria are equivalent:

1 % has a positive partial transpose (PPT), %TA ≥ 0.

2 % satisfies the Computable Cross Norm-Realignment (CCNR)
criterion, ‖R(%)‖1 ≤ 1, where R(%) is the realignment map and ‖...‖1 is
the trace norm.

3 η ≥ 0, or, equivalently 〈A ⊗ A〉 ≥ 0 for all observables A .

4 The correlation matrix, defined via the matrix elements as

Ckl := 〈Mk ⊗Ml〉 − 〈Mk ⊗ 1〉〈1 ⊗Ml〉

is positive semidefinite: C ≥ 0. [A.R. Usha Devi et al., Phys. Rev. Lett. 98, 060501 (2007).]

5 The state satisfies several variants of the Covariance Matrix Criterion
(CMC). Latter are strictly stronger than the CCNR criterion for
non-symmetric states. 9 / 28



Proof of Observation 1: Schmidt decomposition

Proof.

For invariant states, η is a real symmetric matrix.

Diagonalization: {Λk } is the correlation matrix corresponding to the
observables M′k =

∑
OklMl .

Hence, any invariant state can be written as

% =
∑

k

Λk M′k ⊗M′k ,

where M′k are pairwise orthogonal observables. This is almost the
Schmidt decomposition, however, Λk can also be negative.

It can be shown that −1 ≤
∑

k Λk ≤ 1 for invariant states and∑
k Λk = 1 for symmetric states.
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Proof of Observation 1: Equivalence of CCNR and
η ≥ 0

Now we can show the first equivalences.

The Computable Cross Norm-Realignment (CCNR) can be
formulated as follows: If ∑

k

|Λk | > 1

in the Schmidt decomposition, then the quantum state is entangled.

For symmetric states we have
∑

k Λk = 1, and
∑

k |Λk | > 1 is
equivalent to

Λk < 0

for some k . Then 〈M′k ⊗M′k 〉 < 0 and η has a negative eigenvalue.
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Proof of Observation 1: CCNR–PPT equivalence

Let us take an alternative definition of the CCNR criterion.

The CCNR criterion states that if % is separable, then ‖R(%)‖1 ≤ 1
where the realigned density matrix is R(%ij,kl) = %ik ,jl . This just means
that if

‖(%F)TA ‖1 > 1

then % is entangled.
[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]

Since for symmetric states

%F = %,

this condition is equivalent to ‖%TA ‖1 > 1. This is just the PPT criterion,
since we have Tr(%TA ) = 1.
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Proof of Observation 1: Equivalence of C ≥ 0 and
η ≥ 0

Now we show that C ≥ 0⇔ η ≥ 0.

The direction “⇒” is trivial, since for invariant states the matrix
〈Mk ⊗ 1〉〈1 ⊗Ml〉 is a projector and hence positive.

The direction “⇐”: We make for a given state the special choice of
observables Qk = Mk − 〈Mk 〉. Then, we just have C(Mk ) = η(Qk ).

We know that η(Mk ) ≥ 0⇒ η(Qk ) ≥ 0, even if Qk are not pairwise
orthogonal observables. Hence C(Mk ) ≥ 0 follows.
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Proof of Observation 1: Covariance Matrix Criterion

Variants of the Covariance Matrix Criterion:

‖C‖21 ≤ [1 − Tr(%2
A )][1 − Tr(%2

B)]

or
2
∑
|Cii | ≤ [1 − Tr(%2

A )] + [1 − Tr(%2
B)].

[O. Gühne et al., PRL 99, 130504 (2007); O. Gittsovich et al., PRA 78, 052319 (2008).]

If % is symmetric, the fact that C is positive semidefinite gives
‖C‖1 = Tr(C) =

∑
Λk −

∑
k Tr(%A M′k )2 = 1 − Tr(%2

A ) and similarly,∑
i |Cii | =

∑
i Cii = 1 − Tr(%2

A ).

Hence, a state fulfilling C ≥ 0 fulfills also both criteria. On the other
hand, a state violating C ≥ 0 must also violate these criteria, as they
are strictly stronger than the CCNR criterion
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Consequences

Interesting result: For symmetric %

%T1 ≥ 0 ⇐⇒ ∀A : 〈A ⊗ A〉 ≥ 0.

This relates the positivity of partial transposition to the sign of certain
two-body correlations.

Any symmetric state of the following form is PPT

%PPT =
∑

k

pk Mk ⊗Mk , (1)

where pk is a probability distribution, and Mk are pairwise orthogonal
observables, i.e., Tr(M2

k ) = 1. Compare this to the definition of
separability

%sep =
∑

k

pk%k ⊗ %k , (2)

where %k are observables, Tr(%k ) = 1, %k ≥ 0 and %k are pure, i.e,
Tr(%2

k ) = 1.
15 / 28



Consequences II

Any symmetric state that can be written as

%c+ =
∑

k

ck Ak ⊗ Ak , (3)

where ck > 0, and Ak are some (not necessarily pairwise orthogonal)
observables, is PPT. If %c+ is permutationally invariant, then it does
not violate the CCNR criterion.

Multipartite case: A symmetric state of the form

%PPT2:2 =
∑

k

ck Ak ⊗ Ak ⊗ Ak ⊗ Ak (4)

is PPT with respect to the 2 : 2 partition. Example: Smolin state.
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Consequences III

Relation to separability. Symmetric separable states:

%sep =
∑

k

pk%k ⊗ %k .

For such states,

Tr(A ⊗ A%sep) =
∑

k

pk Tr(A%k )2 ≥ 0.

Thus
% is separable⇒ ∀A : 〈A ⊗ A〉% ≥ 0.

But not "⇐⇒ " !
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Consequences IV

Relation to decomposability. Permutationally invariant matrix:

M =
∑

k

ck Mk ⊗Mk .

For such matrices

∃{ck ≥ 0} : M =
∑

k

ck Mk ⊗Mk ⇐⇒ ∀A : 〈A ⊗ A〉% ≥ 0.

Now we have "⇐⇒ " !
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Are there symmetric bound entangled states?

For symmetric states,
1 CCNR,
2 η ≥ 0,
3 C ≥ 0 and
4 CMC

are equivalent to the PPT criterion.

It is then quite hard to find symmetric PPT entangled states.

Do symmetric bound entangled states exist at
all?
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Symmetric bound entangled states

Breuer presented, for even d ≥ 4, a single parameter family of bound
entangled states that are I symmetric

%B = λ|Ψd
0〉〈Ψ

d
0 |+ (1 − λ)Πd

s .

[H.-P. Breuer, PRL 97, 080501 (2006); see also K.G.H. Vollbrecht and M.M. Wolf, PRL 88, 247901 (2002).]

The state is PPT entangled for 0 ≤ λ ≤ 1/(d + 2). Here |Ψ0〉 is the
singlet state and Πs is the normalized projector to the symmetric
subspace.

Idea to construct bound entangled states with an S-symmetry: We
embed a low dimensional entangled state into a higher dimensional
Hilbert space, such that it becomes symmetric, while it remains
entangled.
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An 8 × 8 symmetric bound entangled states

We consider the symmetric state

%̂ = λΠd2
a ⊗ |Ψ

d
0〉〈Ψ

d
0 |+ (1 − λ)Πd2

s ⊗ Πd
s .

B

s /a

Here, Πd2
a and Πd2

s are normalized projectors to the two-qudit
symmetric/antisymmetric subspace with dimension d2. Thus, %̂ is
symmetric.

If the original system is of dimension d × d then the system of %̂ is of
dimension dd2 × dd2. Since %B is the reduced state of %̂, if the first is
entangled, then the second is also entangled.

For d2 = 2 and d = 4, numerical calculation shows that %̂ is PPT for
λ < 0.062.

This provides an example of an S symmetric bound entangled state of size
8 × 8.
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Symmetric bound entangled state via numerics–
Basic idea

An N-qubit symmetric state, that is, a state of the symmetric
subspace (even N).

Such a state is either separable with respect to all bipartitions or it is
entangled with respect to all bipartitions.
[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]

Thus any state that is PPT with respect to the N
2 : N

2 partition while
NPT with respect to some other partition is bound entangled with
respect to the N

2 : N
2 partition.

PPT

NPT

Since the state is symmetric, it can straightforwardly be mapped to a
( N

2 + 1) × ( N
2 + 1) bipartite symmetric state.
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Symmetric bound entangled state via numerics II

Fist, we generate an initial random state % that is PPT with respect to
the N

2 : N
2 partition.

Then, we compute the minimum nonzero eigenvalue of the partial
transpose of % with respect to all other partitions

λmin(%) := min
k

min
l
λl(%

TIk ).

If λmin(%) < 0 then the state is bound entangled with respect to the
N
2 : N

2 partition. If it is non-negative then we start an optimization
process for decreasing this quantity.

We generate another random density matrix ∆%, and check the
properties of

%′ = (1 − ε)% + ε∆%, (5)

where 0 < ε < 1 is a small constant. If %′ is still PPT with respect to
the N

2 : N
2 partition and λmin(%′) < λmin(%) then we use %′ as our new

random initial state %.
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3 × 3 symmetric bound entangled state
Repeating this procedure, we obtained a four-qubit symmetric state
this way

%BE4 =


0.22 0 0 −0.059 0

0 0.176 0 0 0
0 0 0.167 0 0

−0.059 0 0 0.254 0
0 0 0 0 0.183


.

The basis states are |0〉 := |0000〉, |1〉 := sym(|1000〉),
|2〉 := sym(|1100〉), ...

The state is bound entangled with respect to the 2 : 2 partition. This
corresponds to a 3 × 3 bipartite symmetric bound entangled state.

Simplest possible symmetric bound entangled state
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Five- and six-qubit fully PPT entangled states

Our method can be straightforwardly generalized to create
multipartite bound entangled states of the symmetric subspace, such
that all bipartitions are PPT (“fully PPT states”).

We found such a state for five and six qubits.

These states are both fully PPT and genuine multipartite entangled.

Peres conjecture: fully PPT states cannot violate a Bell inequality.
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Conclusions

In summary, we have discussed entanglement in symmetric systems.

We showed that for states that are in the symmetric subspace several
relevant entanglement condition coincide:

PPT criterion
CCNR criterion
η ≥ 0
C ≥ 0
CMC

We proved the existence of symmetric bound entangled states, in
particular, 3 × 3, five-qubit and six-qubit symmetric PPT entangled
states.

See G. Tóth and O. Gühne, PRL 102, 170503 (2009).

*** THANK YOU ***
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