

Entanglement and permutational symmetry PRL 102, 170503 (2009)

Géza Tóth^{1,2,3} and O. Gühne^{4,5}

¹Theoretical Physics, UPV/EHU, Bilbao, Spain
²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
³Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest

⁴Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,Innsbruck, Austria ⁵Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria

Leuven Mathematical Physics Days, Leuven, Belgium 6 May, 2010

- Intanglement criteria for bipartite systems
- Symmetric bound entangled states–Bipartite case
- Symmetric bound entangled states–Multipartite case

- Intanglement criteria for bipartite systems
- Symmetric bound entangled states–Bipartite case
- Symmetric bound entangled states–Multipartite case

- Symmetry is a central concept in quantum mechanics. Typically, the presence of some symmetry simplifies our calculations in physics.
- We consider permutational symmetry.
- Can permutational symmetry simplify the separability problem?

- Entanglement criteria for bipartite systems
- Symmetric bound entangled states–Bipartite case
- Symmetric bound entangled states–Multipartite case

Two types of symmetries

Two *d*-dimensional quantum systems.

• We call a state permutationally invariant (or just invariant, $\rho \in I$) if ρ is invariant under exchanging the particles. That is,

$$F \varrho F = \varrho,$$

where the flip operator is $F = \sum_{ij} |ij\rangle\langle ji|$. The reduced state of two randomly chosen particles of a larger ensemble has this symmetry.

Two types of symmetries

Two *d*-dimensional quantum systems.

• We call a state permutationally invariant (or just invariant, $\rho \in I$) if ρ is invariant under exchanging the particles. That is,

$$F \varrho F = \varrho,$$

where the flip operator is $F = \sum_{ij} |ij\rangle\langle ji|$. The reduced state of two randomly chosen particles of a larger ensemble has this symmetry.

2 We call a state symmetric ($\rho \in S$) if it acts on the symmetric subspace only.

$$F\varrho = \varrho F = \varrho.$$

This is the state space of two *d*-state bosons.

Clearly, we have $S \subset I$.

Connection to exchangeable states

A state is exchangeable if it can be written as

$$arrho = \int \mathsf{d} \mu(\sigma) \sigma^{\otimes \mathsf{N}}.$$

Such a state has a symmetric extension of arbitrary number of qubits.

Two-site marginals of such states are of the form

$$\sum_{k} p_{k} \varrho_{k} \otimes \varrho_{k}.$$

They are permutationally invariant and separable states.

There are permutionally invariant separable state that are not like that

$$\varrho = \frac{1}{2}(\varrho_1 \otimes \varrho_2 + \varrho_2 \otimes \varrho_1).$$

[M. Fannes and C. Vandenplas, J. Phys A 39, 13843 (2006).]

Expectation value matrix

Definition

Expectation value matrix of a bipartite quantum state is

 $\eta_{kl}(\varrho) := \langle M_k \otimes M_l \rangle_{\varrho},$

where M_k 's are local orthogonal observables for both parties, satisfying

 $\mathrm{Tr}(M_k M_l) = \delta_{kl}.$

We can decompose the density matrix as

$$\varrho = \sum_{kl} \eta_{kl} M_k \otimes M_l.$$

Equivalence of several entanglement conditions for symmetric states

Observation 1. Let $\rho \in S$ be a symmetric state. Then the following separability criteria are equivalent:

- ρ has a positive partial transpose (PPT), $\rho^{T_A} \ge 0$.
- o satisfies the Computable Cross Norm-Realignment (CCNR) criterion, $||R(\varrho)||_1 \le 1$, where $R(\varrho)$ is the realignment map and $||...||_1$ is the trace norm.
- $0 \eta \ge 0$, or, equivalently $\langle A \otimes A \rangle \ge 0$ for all observables A.
- The correlation matrix, defined via the matrix elements as

$$C_{kl} := \langle M_k \otimes M_l \rangle - \langle M_k \otimes \mathbb{1} \rangle \langle \mathbb{1} \otimes M_l \rangle$$

is positive semidefinite: $C \ge 0$. [A.R. Usha Devi et al., Phys. Rev. Lett. 98, 060501 (2007).]

The state satisfies several variants of the Covariance Matrix Criterion (CMC). Latter are strictly stronger than the CCNR criterion for non-symmetric states.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix.
- Diagonalization: {Λ_k} is the correlation matrix corresponding to the observables M'_k = Σ O_{kl}M_l.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix.
- Diagonalization: {Λ_k} is the correlation matrix corresponding to the observables M'_k = Σ O_{kl}M_l.
- Hence, any invariant state can be written as

$$\varrho = \sum_{k} \Lambda_k M'_k \otimes M'_k,$$

where M'_k are pairwise orthogonal observables. This is almost the Schmidt decomposition, however, Λ_k can also be negative.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix.
- Diagonalization: {Λ_k} is the correlation matrix corresponding to the observables M'_k = Σ O_{kl}M_l.
- Hence, any invariant state can be written as

$$\varrho = \sum_k \Lambda_k M'_k \otimes M'_k,$$

where M'_k are pairwise orthogonal observables. This is almost the Schmidt decomposition, however, Λ_k can also be negative.

• It can be shown that $-1 \le \sum_k \Lambda_k \le 1$ for invariant states and $\sum_k \Lambda_k = 1$ for symmetric states.

Proof of Observation 1: Equivalence of CCNR and $\eta \ge 0$

Now we can show the first equivalences.

 The Computable Cross Norm-Realignment (CCNR) can be formulated as follows: If

$$\sum_{k} |\Lambda_k| > 1$$

in the Schmidt decomposition, then the quantum state is entangled.

Proof of Observation 1: Equivalence of CCNR and $\eta \ge 0$

Now we can show the first equivalences.

 The Computable Cross Norm-Realignment (CCNR) can be formulated as follows: If

$$\sum_k |\Lambda_k| > 1$$

in the Schmidt decomposition, then the quantum state is entangled.

• For symmetric states we have $\sum_k \Lambda_k = 1$, and $\sum_k |\Lambda_k| > 1$ is equivalent to

$$\Lambda_k < 0$$

for some *k*. Then $\langle M'_k \otimes M'_k \rangle < 0$ and η has a negative eigenvalue.

Proof of Observation 1: CCNR–PPT equivalence

Let us take an alternative definition of the CCNR criterion.

The CCNR criterion states that if *ρ* is separable, then ||*R*(*ρ*)||₁ ≤ 1 where the realigned density matrix is *R*(*ρ*_{ij,kl}) = *ρ*_{ik,jl}. This just means that if

$$\|(\varrho F)^{T_A}\|_1 > 1$$

then ϱ is entangled.

[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]

Proof of Observation 1: CCNR–PPT equivalence

Let us take an alternative definition of the CCNR criterion.

The CCNR criterion states that if *ρ* is separable, then ||*R*(*ρ*)||₁ ≤ 1 where the realigned density matrix is *R*(*ρ*_{ij,kl}) = *ρ*_{ik,jl}. This just means that if

$$\|(\varrho F)^{T_A}\|_1 > 1$$

then ϱ is entangled.

[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]

• Since for symmetric states

$$\varrho F = \varrho,$$

this condition is equivalent to $\|\varrho^{T_A}\|_1 > 1$. This is just the PPT criterion, since we have $\operatorname{Tr}(\varrho^{T_A}) = 1$.

Proof of Observation 1: Equivalence of $C \ge 0$ **and** $\eta \ge 0$

- Now we show that $C \ge 0 \Leftrightarrow \eta \ge 0$.
- The direction " \Rightarrow " is trivial, since for invariant states the matrix $\langle M_k \otimes 1 \rangle \langle 1 \otimes M_l \rangle$ is a projector and hence positive.
- The direction "⇐": We make for a given state the special choice of observables Q_k = M_k ⟨M_k⟩. Then, we just have C(M_k) = η(Q_k).
- We know that η(M_k) ≥ 0 ⇒ η(Q_k) ≥ 0, even if Q_k are not pairwise orthogonal observables. Hence C(M_k) ≥ 0 follows.

Proof of Observation 1: Covariance Matrix Criterion

• Variants of the Covariance Matrix Criterion:

$$\|C\|_1^2 \leq [1 - \operatorname{Tr}(\varrho_A^2)][1 - \operatorname{Tr}(\varrho_B^2)]$$

or

$$2\sum |\mathcal{C}_{ii}| \leq [1 - \mathrm{Tr}(\varrho_A^2)] + [1 - \mathrm{Tr}(\varrho_B^2)].$$

[O. Gühne et al., PRL 99, 130504 (2007); O. Gittsovich et al., PRA 78, 052319 (2008).]

- If ρ is symmetric, the fact that *C* is positive semidefinite gives $\|C\|_1 = \operatorname{Tr}(C) = \sum \Lambda_k - \sum_k \operatorname{Tr}(\rho_A M'_k)^2 = 1 - \operatorname{Tr}(\rho_A^2)$ and similarly, $\sum_i |C_{ii}| = \sum_i C_{ii} = 1 - \operatorname{Tr}(\rho_A^2).$
- Hence, a state fulfilling C ≥ 0 fulfills also both criteria. On the other hand, a state violating C ≥ 0 must also violate these criteria, as they are strictly stronger than the CCNR criterion

Consequences

Interesting result: For symmetric ρ

$$\varrho^{T1} \geq 0 \iff \forall A : \langle A \otimes A \rangle \geq 0.$$

This relates the positivity of partial transposition to the sign of certain two-body correlations.

Any symmetric state of the following form is PPT

$$\varrho_{\rm PPT} = \sum_{k} \rho_k M_k \otimes M_k, \qquad (1)$$

where p_k is a probability distribution, and M_k are pairwise orthogonal observables, i.e., $\text{Tr}(M_k^2) = 1$. Compare this to the definition of separability

$$\varrho_{\rm sep} = \sum_{k} p_k \varrho_k \otimes \varrho_k, \qquad (2)$$

where ρ_k are observables, $\operatorname{Tr}(\rho_k) = 1$, $\rho_k \ge 0$ and ρ_k are pure, i.e, $\operatorname{Tr}(\rho_k^2) = 1$.

Consequences II

Any symmetric state that can be written as

$$\varrho_{c+} = \sum_{k} c_k A_k \otimes Ak, \qquad (3)$$

where $c_k > 0$, and A_k are some (not necessarily pairwise orthogonal) observables, is PPT. If ρ_{c+} is permutationally invariant, then it does not violate the CCNR criterion.

• Multipartite case: A symmetric state of the form

$$\varrho_{\rm PPT2:2} = \sum_{k} c_k A_k \otimes A_k \otimes A_k \otimes A_k \tag{4}$$

is PPT with respect to the 2 : 2 partition. Example: Smolin state.

Consequences III

• Relation to separability. Symmetric separable states:

$$\varrho_{\rm sep} = \sum_k p_k \varrho_k \otimes \varrho_k.$$

For such states,

$$\operatorname{Tr}(A \otimes A_{\mathcal{Q}_{\mathrm{sep}}}) = \sum_{k} p_{k} \operatorname{Tr}(A_{\mathcal{Q}_{k}})^{2} \geq 0.$$

Thus

$$\varrho$$
 is separable $\Rightarrow \forall A : \langle A \otimes A \rangle_{\rho} \ge 0.$

But not " \iff "!

Consequences IV

• Relation to decomposability. Permutationally invariant matrix:

$$M=\sum_k c_k M_k\otimes M_k.$$

For such matrices

$$\exists \{c_k \geq 0\} : M = \sum_k c_k M_k \otimes M_k \iff \forall A : \langle A \otimes A \rangle_{\varrho} \geq 0.$$

Now we have " \iff " !

Are there symmetric bound entangled states?

• For symmetric states,

- $\bigcirc C \ge 0 \text{ and}$
- CMC

are equivalent to the PPT criterion.

• It is then quite hard to find symmetric PPT entangled states.

Do symmetric bound entangled states exist at all?

- Entanglement criteria for bipartite systems
- Symmetric bound entangled states–Bipartite case
- Symmetric bound entangled states–Multipartite case

Symmetric bound entangled states

 Breuer presented, for even *d* ≥ 4, a single parameter family of bound entangled states that are *I* symmetric

$$\varrho_{\rm B} = \lambda |\Psi_0^d\rangle \langle \Psi_0^d| + (1 - \lambda) \Pi_s^d.$$

[H.-P. Breuer, PRL 97, 080501 (2006); see also K.G.H. Vollbrecht and M.M. Wolf, PRL 88, 247901 (2002).]

- The state is PPT entangled for 0 ≤ λ ≤ 1/(d + 2). Here |Ψ₀⟩ is the singlet state and Π_s is the normalized projector to the symmetric subspace.
- Idea to construct bound entangled states with an *S*-symmetry: We embed a low dimensional entangled state into a higher dimensional Hilbert space, such that it becomes symmetric, while it remains entangled.

An 8×8 symmetric bound entangled states

• We consider the symmetric state

$$\hat{\varrho} = \lambda \Pi_a^{d_2} \otimes |\Psi_0^d\rangle \langle \Psi_0^d| + (1 - \lambda) \Pi_s^{d_2} \otimes \Pi_s^d.$$

Here, $\Pi_a^{d_2}$ and $\Pi_s^{d_2}$ are normalized projectors to the two-qudit symmetric/antisymmetric subspace with dimension d_2 . Thus, $\hat{\varrho}$ is symmetric.

An 8×8 symmetric bound entangled states

• We consider the symmetric state

$$\hat{\varrho} = \lambda \Pi_a^{d_2} \otimes |\Psi_0^d\rangle \langle \Psi_0^d| + (1 - \lambda) \Pi_s^{d_2} \otimes \Pi_s^d.$$

Here, $\Pi_a^{d_2}$ and $\Pi_s^{d_2}$ are normalized projectors to the two-qudit symmetric/antisymmetric subspace with dimension d_2 . Thus, $\hat{\varrho}$ is symmetric.

- If the original system is of dimension *d* × *d* then the system of *ρ̂* is of dimension *dd*₂ × *dd*₂. Since *ρ*_B is the reduced state of *ρ̂*, if the first is entangled, then the second is also entangled.
- For $d_2 = 2$ and d = 4, numerical calculation shows that $\hat{\varrho}$ is PPT for $\lambda < 0.062$.

This provides an example of an S symmetric bound entangled state of size 8×8 .

- Entanglement criteria for bipartite systems
- Symmetric bound entangled states–Bipartite case
- Symmetric bound entangled states–Multipartite case

• An *N*-qubit symmetric state, that is, a state of the symmetric subspace (even *N*).

- An *N*-qubit symmetric state, that is, a state of the symmetric subspace (even *N*).
- Such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.

[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]

- An *N*-qubit symmetric state, that is, a state of the symmetric subspace (even *N*).
- Such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.

[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]

• Thus any state that is PPT with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition while NPT with respect to some other partition is bound entangled with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition.

- An *N*-qubit symmetric state, that is, a state of the symmetric subspace (even *N*).
- Such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.

[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]

• Thus any state that is PPT with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition while NPT with respect to some other partition is bound entangled with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition.

• Since the state is symmetric, it can straightforwardly be mapped to a $(\frac{N}{2} + 1) \times (\frac{N}{2} + 1)$ bipartite symmetric state.

Symmetric bound entangled state via numerics II

 Fist, we generate an initial random state *ρ* that is PPT with respect to the ^N/₂ : ^N/₂ partition.

Symmetric bound entangled state via numerics II

- Fist, we generate an initial random state *ρ* that is PPT with respect to the ^N/₂ : ^N/₂ partition.
- Then, we compute the minimum nonzero eigenvalue of the partial transpose of *ρ* with respect to all other partitions

$$\lambda_{\min}(\varrho) := \min_{k} \min_{l} \lambda_{l}(\varrho^{T_{l_{k}}}).$$

If $\lambda_{\min}(\varrho) < 0$ then the state is bound entangled with respect to the $\frac{N}{2} : \frac{N}{2}$ partition. If it is non-negative then we start an optimization process for decreasing this quantity.

Symmetric bound entangled state via numerics II

- Fist, we generate an initial random state *ρ* that is PPT with respect to the ^N/₂ : ^N/₂ partition.
- Then, we compute the minimum nonzero eigenvalue of the partial transpose of *ρ* with respect to all other partitions

$$\lambda_{\min}(\varrho) := \min_{k} \min_{l} \lambda_{l}(\varrho^{T_{l_{k}}}).$$

If $\lambda_{\min}(\varrho) < 0$ then the state is bound entangled with respect to the $\frac{N}{2} : \frac{N}{2}$ partition. If it is non-negative then we start an optimization process for decreasing this quantity.

 We generate another random density matrix Δ_Q, and check the properties of

l

$$\varrho' = (1 - \varepsilon)\varrho + \varepsilon \Delta \varrho,$$
 (5)

where $0 < \varepsilon < 1$ is a small constant. If ϱ' is still PPT with respect to the $\frac{N}{2} : \frac{N}{2}$ partition and $\lambda_{\min}(\varrho') < \lambda_{\min}(\varrho)$ then we use ϱ' as our new random initial state ϱ .

3×3 symmetric bound entangled state

 Repeating this procedure, we obtained a four-qubit symmetric state this way

$$\varrho_{BE4} = \begin{pmatrix}
0.22 & 0 & 0 & -0.059 & 0 \\
0 & 0.176 & 0 & 0 & 0 \\
0 & 0 & 0.167 & 0 & 0 \\
-0.059 & 0 & 0 & 0.254 & 0 \\
0 & 0 & 0 & 0 & 0.183
\end{pmatrix}$$

The basis states are $|0\rangle := |0000\rangle$, $|1\rangle := sym(|1000\rangle)$, $|2\rangle := sym(|1100\rangle)$, ...

- The state is bound entangled with respect to the 2 : 2 partition. This corresponds to a 3 × 3 bipartite symmetric bound entangled state.
- Simplest possible symmetric bound entangled state

Five- and six-qubit fully PPT entangled states

- Our method can be straightforwardly generalized to create multipartite bound entangled states of the symmetric subspace, such that *all* bipartitions are PPT ("fully PPT states").
- We found such a state for five and six qubits.
- These states are both fully PPT and genuine multipartite entangled.
- Peres conjecture: fully PPT states cannot violate a Bell inequality.

Conclusions

- In summary, we have discussed entanglement in symmetric systems.
- We showed that for states that are in the symmetric subspace several relevant entanglement condition coincide:
 - PPT criterion
 - CCNR criterion
 - $\eta \ge 0$
 - C ≥ 0
 - CMC
- We proved the existence of symmetric bound entangled states, in particular, 3 × 3, five-qubit and six-qubit symmetric PPT entangled states.
- See G. Tóth and O. Gühne, PRL 102, 170503 (2009).

*** THANK YOU ***