Entanglement and permutational symmetry PRL 102, 170503 (2009)

Géza Tóth ${ }^{1,2,3}$ and O. Gühne ${ }^{4,5}$

${ }^{1}$ Theoretical Physics, UPV/EHU, Bilbao, Spain
${ }^{2}$ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
${ }^{3}$ Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest
${ }^{4}$ Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,Innsbruck, Austria
${ }^{5}$ Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria

Leuven Mathematical Physics Days, Leuven, Belgium 6 May, 2010

Outline

(1) Motivation
(2) Entanglement criteria for bipartite systems
(3) Symmetric bound entangled states-Bipartite case
(4) Symmetric bound entangled states-Multipartite case

Outline

(1) Motivation
(2) Entanglement criteria for bipartite systems
(3) Symmetric bound entangled states-Bipartite case
(4) Symmetric bound entangled states-Multipartite case

Motivation

- Symmetry is a central concept in quantum mechanics. Typically, the presence of some symmetry simplifies our calculations in physics.
- We consider permutational symmetry.
- Can permutational symmetry simplify the separability problem?

Entanglement criteria for bipartite systems

(1) Motivation
(2) Entanglement criteria for bipartite systems
(3) Symmetric bound entangled states-Bipartite case
(4) Symmetric bound entangled states-Multipartite case

Two types of symmetries

Two d-dimensional quantum systems.
(1) We call a state permutationally invariant (or just invariant, $\varrho \in \mathcal{I}$) if ϱ is invariant under exchanging the particles. That is,

$$
F \varrho F=\varrho,
$$

where the flip operator is $F=\sum_{i j}|i j\rangle\langle j i|$. The reduced state of two randomly chosen particles of a larger ensemble has this symmetry.

Two types of symmetries

Two d-dimensional quantum systems.
(1) We call a state permutationally invariant (or just invariant, $\varrho \in \mathcal{I}$) if ϱ is invariant under exchanging the particles. That is,

$$
F \varrho F=\varrho,
$$

where the flip operator is $F=\sum_{i j}|i j\rangle\langle j i|$. The reduced state of two randomly chosen particles of a larger ensemble has this symmetry.
(2) We call a state symmetric $(\varrho \in \mathcal{S})$ if it acts on the symmetric subspace only.

$$
F \varrho=\varrho F=\varrho .
$$

This is the state space of two d-state bosons.

Clearly, we have $\mathcal{S} \subset \mathcal{I}$.

Connection to exchangeable states

- A state is exchangeable if it can be written as

$$
\varrho=\int d \mu(\sigma) \sigma^{\otimes N}
$$

Such a state has a symmetric extension of arbitrary number of qubits.

- Two-site marginals of such states are of the form

$$
\sum_{k} p_{k} \varrho_{k} \otimes \varrho_{k}
$$

They are permutationally invariant and separable states.

- There are permutionally invariant separable state that are not like that

$$
\varrho=\frac{1}{2}\left(\varrho_{1} \otimes \varrho_{2}+\varrho_{2} \otimes \varrho_{1}\right)
$$

Expectation value matrix

Definition

Expectation value matrix of a bipartite quantum state is

$$
\eta_{k l}(\varrho):=\left\langle M_{k} \otimes M_{l}\right\rangle_{\varrho},
$$

where M_{k} 's are local orthogonal observables for both parties, satisfying

$$
\operatorname{Tr}\left(M_{k} M_{l}\right)=\delta_{k l} .
$$

- We can decompose the density matrix as

$$
\varrho=\sum_{k l} \eta_{k l} M_{k} \otimes M_{l} .
$$

Equivalence of several entanglement conditions for symmetric states

Observation 1. Let $\varrho \in \mathcal{S}$ be a symmetric state. Then the following separability criteria are equivalent:
(1) ϱ has a positive partial transpose (PPT), $\varrho^{T_{A}} \geq 0$.
(2) ϱ satisfies the Computable Cross Norm-Realignment (CCNR) criterion, $\|R(\varrho)\|_{1} \leq 1$, where $R(\varrho)$ is the realignment map and $\|\ldots\|_{1}$ is the trace norm.
(3) $\eta \geq 0$, or, equivalently $\langle A \otimes A\rangle \geq 0$ for all observables A.
(4) The correlation matrix, defined via the matrix elements as

$$
C_{k l}:=\left\langle M_{k} \otimes M_{l}\right\rangle-\left\langle M_{k} \otimes \mathbb{1}\right\rangle\left\langle\mathbb{1} \otimes M_{l}\right\rangle
$$

is positive semidefinite: $C \geq 0$. AA.R. Usha Devi etal., Phys. Rev. Lett. 98, 060501 (2007).]
(5) The state satisfies several variants of the Covariance Matrix Criterion (CMC). Latter are strictly stronger than the CCNR criterion for non-symmetric states.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix.
- Diagonalization: $\left\{\Lambda_{k}\right\}$ is the correlation matrix corresponding to the observables $M_{k}^{\prime}=\sum O_{k l} M_{l}$.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix.
- Diagonalization: $\left\{\Lambda_{k}\right\}$ is the correlation matrix corresponding to the observables $M_{k}^{\prime}=\sum O_{k l} M_{l}$.
- Hence, any invariant state can be written as

$$
\varrho=\sum_{k} \Lambda_{k} M_{k}^{\prime} \otimes M_{k}^{\prime},
$$

where M_{k}^{\prime} are pairwise orthogonal observables. This is almost the Schmidt decomposition, however, Λ_{k} can also be negative.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix.
- Diagonalization: $\left\{\Lambda_{k}\right\}$ is the correlation matrix corresponding to the observables $M_{k}^{\prime}=\sum O_{k I} M_{l}$.
- Hence, any invariant state can be written as

$$
\varrho=\sum_{k} \Lambda_{k} M_{k}^{\prime} \otimes M_{k}^{\prime},
$$

where M_{k}^{\prime} are pairwise orthogonal observables. This is almost the Schmidt decomposition, however, Λ_{k} can also be negative.

- It can be shown that $-1 \leq \sum_{k} \Lambda_{k} \leq 1$ for invariant states and $\sum_{k} \Lambda_{k}=1$ for symmetric states.

Proof of Observation 1: Equivalence of CCNR and

 $\eta \geq 0$Now we can show the first equivalences.

- The Computable Cross Norm-Realignment (CCNR) can be formulated as follows: If

$$
\sum_{k}\left|\Lambda_{k}\right|>1
$$

in the Schmidt decomposition, then the quantum state is entangled.

Proof of Observation 1: Equivalence of CCNR and $\eta \geq 0$

Now we can show the first equivalences.

- The Computable Cross Norm-Realignment (CCNR) can be formulated as follows: If

$$
\sum_{k}\left|\Lambda_{k}\right|>1
$$

in the Schmidt decomposition, then the quantum state is entangled.

- For symmetric states we have $\sum_{k} \Lambda_{k}=1$, and $\sum_{k}\left|\Lambda_{k}\right|>1$ is equivalent to

$$
\Lambda_{k}<0
$$

for some k. Then $\left\langle M_{k}^{\prime} \otimes M_{k}^{\prime}\right\rangle<0$ and η has a negative eigenvalue.

Proof of Observation 1: CCNR-PPT equivalence

Let us take an alternative definition of the CCNR criterion.

- The CCNR criterion states that if ϱ is separable, then $\|R(\varrho)\|_{1} \leq 1$ where the realigned density matrix is $R\left(\varrho_{i j, k l}\right)=\varrho_{i k, j l}$. This just means that if

$$
\left\|(\varrho F)^{T_{A}}\right\|_{1}>1
$$

then ϱ is entangled.
[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]

Proof of Observation 1: CCNR-PPT equivalence

Let us take an alternative definition of the CCNR criterion.

- The CCNR criterion states that if ϱ is separable, then $\|R(\varrho)\|_{1} \leq 1$ where the realigned density matrix is $R\left(\varrho_{i j, k l}\right)=\varrho_{i k, j l}$. This just means that if

$$
\left\|(\varrho F)^{T_{A}}\right\|_{1}>1
$$

then ϱ is entangled.
[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]

- Since for symmetric states

$$
\varrho F=\varrho,
$$

this condition is equivalent to $\left\|\varrho^{T_{A}}\right\|_{1}>1$. This is just the PPT criterion, since we have $\operatorname{Tr}\left(\varrho^{T_{A}}\right)=1$.

Proof of Observation 1: Equivalence of $C \geq 0$ and $\eta \geq 0$

- Now we show that $C \geq 0 \Leftrightarrow \eta \geq 0$.
- The direction " \Rightarrow " is trivial, since for invariant states the matrix $\left\langle M_{k} \otimes \mathbb{1}\right\rangle\left\langle\mathbb{1} \otimes M_{l}\right\rangle$ is a projector and hence positive.
- The direction " \Leftarrow ": We make for a given state the special choice of observables $Q_{k}=M_{k}-\left\langle M_{k}\right\rangle$. Then, we just have $C\left(M_{k}\right)=\eta\left(Q_{k}\right)$.
- We know that $\eta\left(M_{k}\right) \geq 0 \Rightarrow \eta\left(Q_{k}\right) \geq 0$, even if Q_{k} are not pairwise orthogonal observables. Hence $C\left(M_{k}\right) \geq 0$ follows.

Proof of Observation 1: Covariance Matrix Criterion

- Variants of the Covariance Matrix Criterion:

$$
\|C\|_{1}^{2} \leq\left[1-\operatorname{Tr}\left(\varrho_{A}^{2}\right)\right]\left[1-\operatorname{Tr}\left(\varrho_{B}^{2}\right)\right]
$$

or

$$
2 \sum\left|C_{i i}\right| \leq\left[1-\operatorname{Tr}\left(\varrho_{A}^{2}\right)\right]+\left[1-\operatorname{Tr}\left(\varrho_{B}^{2}\right)\right]
$$

[O. Gühne et al., PRL 99, 130504 (2007); O. Gittsovich et al., PRA 78, 052319 (2008).]

- If ϱ is symmetric, the fact that C is positive semidefinite gives $\|C\|_{1}=\operatorname{Tr}(C)=\sum \Lambda_{k}-\sum_{k} \operatorname{Tr}\left(\varrho_{A} M_{k}^{\prime}\right)^{2}=1-\operatorname{Tr}\left(\varrho_{A}^{2}\right)$ and similarly, $\sum_{i}\left|C_{i i}\right|=\sum_{i} C_{i i}=1-\operatorname{Tr}\left(\varrho_{A}^{2}\right)$.
- Hence, a state fulfilling $C \geq 0$ fulfills also both criteria. On the other hand, a state violating $C \geq 0$ must also violate these criteria, as they are strictly stronger than the CCNR criterion

Consequences

- Interesting result: For symmetric ϱ

$$
\varrho^{T 1} \geq 0 \Longleftrightarrow \forall A:\langle A \otimes A\rangle \geq 0
$$

This relates the positivity of partial transposition to the sign of certain two-body correlations.

- Any symmetric state of the following form is PPT

$$
\begin{equation*}
\varrho_{\mathrm{PPT}}=\sum_{k} p_{k} M_{k} \otimes M_{k}, \tag{1}
\end{equation*}
$$

where p_{k} is a probability distribution, and M_{k} are pairwise orthogonal observables, i.e., $\operatorname{Tr}\left(M_{k}^{2}\right)=1$. Compare this to the definition of separability

$$
\begin{equation*}
\varrho_{\text {sep }}=\sum_{k} p_{k} \varrho_{k} \otimes \varrho_{k}, \tag{2}
\end{equation*}
$$

where ϱ_{k} are observables, $\operatorname{Tr}\left(\varrho_{k}\right)=1, \varrho_{k} \geq 0$ and ϱ_{k} are pure, i.e, $\operatorname{Tr}\left(\varrho_{k}^{2}\right)=1$.

Consequences II

- Any symmetric state that can be written as

$$
\begin{equation*}
\varrho_{c+}=\sum_{k} c_{k} A_{k} \otimes A k \tag{3}
\end{equation*}
$$

where $c_{k}>0$, and A_{k} are some (not necessarily pairwise orthogonal) observables, is PPT. If ϱ_{c+} is permutationally invariant, then it does not violate the CCNR criterion.

- Multipartite case: A symmetric state of the form

$$
\begin{equation*}
\varrho_{\mathrm{PPT2}: 2}=\sum_{k} c_{k} A_{k} \otimes A_{k} \otimes A_{k} \otimes A_{k} \tag{4}
\end{equation*}
$$

is PPT with respect to the $2: 2$ partition. Example: Smolin state.

Consequences III

- Relation to separability. Symmetric separable states:

$$
\varrho_{\mathrm{sep}}=\sum_{k} p_{k} \varrho_{k} \otimes \varrho_{k} .
$$

For such states,

$$
\operatorname{Tr}\left(A \otimes A \varrho_{\mathrm{sep}}\right)=\sum_{k} p_{k} \operatorname{Tr}\left(A \varrho_{k}\right)^{2} \geq 0
$$

Thus ϱ is separable $\Rightarrow \forall A:\langle A \otimes A\rangle_{\varrho} \geq 0$.
But not " $\Longleftrightarrow "!$

Consequences IV

- Relation to decomposability. Permutationally invariant matrix:

$$
M=\sum_{k} c_{k} M_{k} \otimes M_{k}
$$

For such matrices

$$
\exists\left\{c_{k} \geq 0\right\}: M=\sum_{k} c_{k} M_{k} \otimes M_{k} \Longleftrightarrow \forall A:\langle A \otimes A\rangle_{\varrho} \geq 0 .
$$

Now we have " $\Longleftrightarrow "!$

Are there symmetric bound entangled states?

- For symmetric states,
(1) CCNR,
(2) $\eta \geq 0$,
(3) $C \geq 0$ and
(4) CMC
are equivalent to the PPT criterion.
- It is then quite hard to find symmetric PPT entangled states.

Do symmetric bound entangled states exist at all?

Symmetric bound entangled states-Bipartite case

(1) Motivation
(2) Entanglement criteria for bipartite systems
(3) Symmetric bound entangled states-Bipartite case
(4) Symmetric bound entangled states-Multipartite case

Symmetric bound entangled states

- Breuer presented, for even $d \geq 4$, a single parameter family of bound entangled states that are \mathcal{I} symmetric

$$
\varrho_{\mathrm{B}}=\lambda\left|\Psi_{0}^{d}\right\rangle\left\langle\Psi_{0}^{d}\right|+(1-\lambda) \Pi_{s}^{d} .
$$

[H.-P. Breuer, PRL 97, 080501 (2006); see also K.G.H. Vollbrecht and M.M. Wolf, PRL 88, 247901 (2002).]

- The state is PPT entangled for $0 \leq \lambda \leq 1 /(d+2)$. Here $\left|\Psi_{0}\right\rangle$ is the singlet state and Π_{s} is the normalized projector to the symmetric subspace.
- Idea to construct bound entangled states with an \mathcal{S}-symmetry: We embed a low dimensional entangled state into a higher dimensional Hilbert space, such that it becomes symmetric, while it remains entangled.

An 8×8 symmetric bound entangled states

- We consider the symmetric state
$\hat{\varrho}=\lambda \Pi_{a}^{d_{2}} \otimes\left|\Psi_{0}^{d}\right\rangle\left\langle\Psi_{0}^{d}\right|+(1-\lambda) \Pi_{s}^{d_{2}} \otimes \Pi_{s}^{d}$.

$\square \Pi_{s} / \Pi_{a}$ Here, $\Pi_{a}^{d_{2}}$ and $\Pi_{s}^{d_{2}}$ are normalized projectors to the two-qudit symmetric/antisymmetric subspace with dimension d_{2}. Thus, $\hat{\varrho}$ is symmetric.

An 8×8 symmetric bound entangled states

- We consider the symmetric state
$\hat{\varrho}=\lambda \Pi_{a}^{d_{2}} \otimes\left|\Psi_{0}^{d}\right\rangle\left\langle\Psi_{0}^{d}\right|+(1-\lambda) \Pi_{s}^{d_{2}} \otimes \Pi_{s}^{d}$.

Here, $\Pi_{a}^{d_{2}}$ and $\Pi_{s}^{d_{2}}$ are normalized projectors to the two-qudit symmetric/antisymmetric subspace with dimension d_{2}. Thus, $\hat{\varrho}$ is symmetric.

- If the original system is of dimension $d \times d$ then the system of $\hat{\varrho}$ is of dimension $d d_{2} \times d d_{2}$. Since ϱ_{B} is the reduced state of ϱ, if the first is entangled, then the second is also entangled.
- For $d_{2}=2$ and $d=4$, numerical calculation shows that $\hat{\varrho}$ is PPT for $\lambda<0.062$.

This provides an example of an \mathcal{S} symmetric bound entangled state of size 8×8.

Symmetric bound entangled states-Multipartite case

(1) Motivation
(2) Entanglement criteria for bipartite systems
(3) Symmetric bound entangled states-Bipartite case
(4) Symmetric bound entangled states-Multipartite case

Symmetric bound entangled state via numericsBasic idea

- An N -qubit symmetric state, that is, a state of the symmetric subspace (even N).

Symmetric bound entangled state via numericsBasic idea

- An N-qubit symmetric state, that is, a state of the symmetric subspace (even N).
- Such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.
[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]

Symmetric bound entangled state via numericsBasic idea

- An N -qubit symmetric state, that is, a state of the symmetric subspace (even N).
- Such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.
[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]
- Thus any state that is PPT with respect to the $\frac{N}{2}: \frac{N}{2}$ partition while NPT with respect to some other partition is bound entangled with respect to the $\frac{N}{2}: \frac{N}{2}$ partition.

> PPT

NPT

Symmetric bound entangled state via numericsBasic idea

- An N-qubit symmetric state, that is, a state of the symmetric subspace (even N).
- Such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.
[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]
- Thus any state that is PPT with respect to the $\frac{N}{2}: \frac{N}{2}$ partition while NPT with respect to some other partition is bound entangled with respect to the $\frac{N}{2}: \frac{N}{2}$ partition.

PPT

NPT

- Since the state is symmetric, it can straightforwardly be mapped to a $\left(\frac{N}{2}+1\right) \times\left(\frac{N}{2}+1\right)$ bipartite symmetric state.

Symmetric bound entangled state via numerics II

- Fist, we generate an initial random state ϱ that is PPT with respect to the $\frac{N}{2}: \frac{N}{2}$ partition.

Symmetric bound entangled state via numerics II

- Fist, we generate an initial random state ϱ that is PPT with respect to the $\frac{N}{2}: \frac{N}{2}$ partition.
- Then, we compute the minimum nonzero eigenvalue of the partial transpose of ϱ with respect to all other partitions

$$
\lambda_{\min }(\varrho):=\min _{k} \min _{l} \lambda_{l}\left(\varrho^{T_{I_{k}}}\right) .
$$

If $\lambda_{\text {min }}(\varrho)<0$ then the state is bound entangled with respect to the $\frac{N}{2}: \frac{N}{2}$ partition. If it is non-negative then we start an optimization process for decreasing this quantity.

Symmetric bound entangled state via numerics II

- Fist, we generate an initial random state ϱ that is PPT with respect to the $\frac{N}{2}: \frac{N}{2}$ partition.
- Then, we compute the minimum nonzero eigenvalue of the partial transpose of ϱ with respect to all other partitions

$$
\lambda_{\min }(\varrho):=\min _{k} \min _{l} \lambda_{l}\left(\varrho^{T_{I_{k}}}\right) .
$$

If $\lambda_{\text {min }}(\varrho)<0$ then the state is bound entangled with respect to the $\frac{N}{2}: \frac{N}{2}$ partition. If it is non-negative then we start an optimization process for decreasing this quantity.

- We generate another random density matrix $\Delta \varrho$, and check the properties of

$$
\begin{equation*}
\varrho^{\prime}=(1-\varepsilon) \varrho+\varepsilon \Delta \varrho, \tag{5}
\end{equation*}
$$

where $0<\varepsilon<1$ is a small constant. If ϱ^{\prime} is still PPT with respect to the $\frac{N}{2}: \frac{N}{2}$ partition and $\lambda_{\min }\left(\varrho^{\prime}\right)<\lambda_{\min }(\varrho)$ then we use ϱ^{\prime} as our new random initial state ϱ.

3×3 symmetric bound entangled state

- Repeating this procedure, we obtained a four-qubit symmetric state this way

$$
\varrho_{B E 4}=\left(\begin{array}{ccccc}
0.22 & 0 & 0 & -0.059 & 0 \\
0 & 0.176 & 0 & 0 & 0 \\
0 & 0 & 0.167 & 0 & 0 \\
-0.059 & 0 & 0 & 0.254 & 0 \\
0 & 0 & 0 & 0 & 0.183
\end{array}\right) .
$$

The basis states are $|0\rangle:=|0000\rangle,|1\rangle:=\operatorname{sym}(|1000\rangle)$, $|2\rangle:=\operatorname{sym}(|1100\rangle), \ldots$

- The state is bound entangled with respect to the $2: 2$ partition. This corresponds to a 3×3 bipartite symmetric bound entangled state.
- Simplest possible symmetric bound entangled state

Five- and six-qubit fully PPT entangled states

- Our method can be straightforwardly generalized to create multipartite bound entangled states of the symmetric subspace, such that all bipartitions are PPT ("fully PPT states").
- We found such a state for five and six qubits.
- These states are both fully PPT and genuine multipartite entangled.
- Peres conjecture: fully PPT states cannot violate a Bell inequality.

Conclusions

- In summary, we have discussed entanglement in symmetric systems.
- We showed that for states that are in the symmetric subspace several relevant entanglement condition coincide:
- PPT criterion
- CCNR criterion
- $\eta \geq 0$
- $C \geq 0$
- CMC
- We proved the existence of symmetric bound entangled states, in particular, 3×3, five-qubit and six-qubit symmetric PPT entangled states.
- See G. Tóth and O. Gühne, PRL 102, 170503 (2009).

