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Introduction

Due to the rapid development of quantum engineering and
quantum control, it is now possible to carry out experiments in
which many-body quantum systems undergo coherent
dynamics.

Few particles (< 10), creation of interesting quantum states in
various physical systems, such as trapped ions, photonic
systems, or molecules controlled by nuclear magnetic
resonance (NMR).

Large scale (e.g., 105 particles) systems, for example, optical
lattices of cold two-state atoms and cold atomic clouds.

These experiments are possible due to novel technologies
developed in the last ten years.
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What in new a quantum system compared to its
classical counterpart?

Let us compare a classical bit to a quantum bit (qubit)

A classical bit is either in state "0" or in state "1".
A qubit (two-state system) can be in a superposition of the two.

|Ψ〉 = c0|0〉 + c1|1〉,

where c0 and c1 are complex numbers. It is usual to use the
shorthand notation, write

|Ψ〉 =

(
c0

c1

)
,

and call |Ψ〉 the state vector.

To describe a quantum system one needs more degrees of
freedom.
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Two qubits

Let us consider a two-qubit system. Naively, one could think
that

|Ψ1〉 = c0|0〉 + c1|1〉,

|Ψ2〉 = d0|0〉 + d1|1〉,

However, the correct picture is that the two-qubit system is
described by

|Ψ12〉 = K0|00〉 + K1|01〉 + K2|10〉 + K3|11〉

where K ’s are complex constants.

Note that the number of the degrees of freedom in the second
case is larger.
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Two qubits II

The naive picture assumes that the two systems are in a
certain quantum state independently of the other system.

There are quantum states like that, for example,

|Ψ1〉 =
1√
2
|0〉 + 1√

2
|1〉,

|Ψ2〉 =
1√
2
|0〉 + 1√

2
|1〉,

corresponds to

|Ψ12〉 = |Ψ1〉 ⊗ |Ψ2〉

=
( 1√

2
|0〉 + 1√

2
|1〉) ⊗ ( 1√

2
|0〉 + 1√

2
|1〉

)
= 1

4
(
|00〉 + |01〉 + |10〉 + |11〉

)
.

These are the product states that are examples of separable
states.

States that cannot be written in this product form are the
entangled states.
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Mixed states

So far we were talking about pure quantum states.

In a real experiment quantum states are mixed. Such states
can be described by a density matrix

ρ =
∑

k

pk |Ψk 〉(|Ψk 〉)† =
∑

k

pk |Ψk 〉〈Ψk |,

where
∑

k pk = 1 and pk ≥ 0.

A mixed state is separable if it can be written as the convex
combination of product states

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k .

Otherwise the state is entangled. [R. Werner, Phys. Rev. A 1989.]
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Convexity

Properties of density matrices

ρ = ρ†,

Tr(ρ) = 1,

ρ ≥ 0.

Mixing two systems:

ρ′ = pρ1 + (1 − p)ρ2. (1)

The set of density matrices is convex. If ρ1 and ρ2 are density
matrices then ρ′ is also a density matrix.

The set of density matrices corresponding to separable states
is also convex. If ρ1 and ρ2 are separable density matrices
then ρ′ is also a separable density matrix.
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Convex sets

Now, if we use the elements of the density matrix as
coordinate axes, we can draw the following picture:

Separable states

Entangled states
ρ

1

ρ
2

ρ'

Pure state are at the boundary of the set of states.
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Many-body quantum systems

An N-qubit mixed state is separable if it can be written as

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ ρ

(3)
k ⊗ ... ⊗ ρ

(N)
k .

Otherwise the state is entangled.

A bipartite quantum state is either separable or entangled.
The multipartite case is more complicated.

We have to distinguish between quantum states in which only
some of the qubits are entangled from those in which all the
qubits are entangled.

Biseparable states are the states that might be entangled but
they are separable with respect to some partition. States that
are not biseparable are called genuine multipartite entangled.
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Genuine multipartite entanglement

Let us see two entangled states of four qubits:

|GHZ4〉 =
1√
2
(|0000〉 + |1111〉),

|ΨB〉 =
1√
2
(|0000〉 + |0011〉) = 1√

2
|00〉 ⊗ (|00〉 + |11〉).

The first state is genuine multipartite entangled, the second
state is biseparable.
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Convex sets for the multi-qubit case

The idea also works for the multi-qubit case: A state is
biseparable if it can be composed by mixing pure bisparable
states.

Genuine multipartite
 entangled states

Separable states

Biseparable states
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Why is entanglement important?

Can be used for quantum information processing protocols,
quantum teleportation or quantum cryptography.

Important for quantum algorithms such as prime factoring or
search.

Can also be used in quantum metrology (i.e., atomic clocks).

Entanglement is a natural goal for experiments.
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Detection of entanglement

Many quantum engineering/quantum control experiments
have two main steps:

Creation of an entangled quantum state,
Detection its entanglement.

Thus entanglement detection is one of the most important
subjects in this field.

Examples of quantum control experiments:
Nuclear spin of atoms in a molecule (NMR): ≤ 10 qubits
Parametric down-conversion and post-selection: ≤ 6 qubits
Trapped ion experiments: ≤ 8 qubits
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Entanglement detection with tomography

Determine the density matrix and apply an entanglement
crierion.

For N qubits the density matrix has 2N × 2N complex
elements, and has 22N − 1 real degrees of freedom.

10 qubits→ ∼ 1 million measuremets
20 qubits→ ∼ 1012 measuremets

Surprise: Above modest system sizes full tomography is not
possible. One has to find methods for entanglement detection
that are feasible even without knowing the quantum state.
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Entanglement detection with a single nonlocal
measurement: Entanglement witnesses

An operator W is an entanglement witness if
〈W〉 = Tr(Wρ) < 0 only for entangled states.
[Horodecki et al., Phys. Lett. A 223, 8 (1996); Terhal, quant-ph/9810091; Lewenstein, Phys. Rev. A 62, 052310

(2000).]

Separable states

Entangled states

Quantum states detected 
by the witness
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Entanglement detection with local measurements

Example:

WGHZ :=
1
2
1 − |GHZ〉〈GHZ |

is a witness, where |GHZ〉 := (|000..00〉 + |111..11〉)/
√

2.
WGHZ detects entanglement in the vicinity of GHZ states.

Problem: Only local measurements are possible. With local
measurements, operators of the type 〈A (1)B (2)C (3)C (4)〉 can
be measured.

A B C D

Qubit #1

Qubit #2

Qubit #3

Qubit #4
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Entanglement detection with local measurements II

All operators must be decomposed into the sum of locally
measurable terms and these terms must be measured
individually.

For example,

|GHZ3〉〈GHZ3| =
1
8

(51 − σ(1)
z σ

(2)
z − σ

(1)
z σ

(3)
z − σ

(2)
z σ

(3)
z

− 2σ(1)
x σ

(2)
x σ

(3)
x )

+
1
4

(σ(1)
x + σ

(1)
y )(σ(2)

x + σ
(2)
y )(σ(3)

x + σ
(3)
y )

+
1
4

(σ(1)
x − σ

(1)
y )(σ(2)

x − σ
(2)
y )(σ(3)

x − σ
(3)
y ).

[O. Gühne és P. Hyllus, Int. J. Theor. Phys. 42, 1001-1013 (2003). M. Bourennane et al., Phys. Rev. Lett. 92

087902 (2004).]

As N increases, the number of terms increases exponentially.
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Solution: Entanglement witnesses designed for
detection with few measurements

Alternative witness with easy decomposition

W ′
GHZ := 31 − 2

[σ(1)
x σ

(2)
x · · · σ

(N−1)
x σ(N)

x 1

2
+

N∏
k=2

σ(k )
z σ

(k+1)
z + 1

2

]
.

Note that W ′
GHZ ≥ 2WGHZ . [GT and O. Gühne, Phys. Rev. Lett. 94, 060501 (2005).]

The number of local measurements does not increases with
N.

σ
x

σ
x σ

x
σ
x

σ
z

σ
z σ

z
σ
z

1.

2.
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Example: An experiment

Creation of a four-qubit cluster state with photons and its
detection [Figure from Kiesel, C. Schmid, U. Weber, GT, O. Gühne, R. Ursin, and H. Weinfurter, Phys.

Rev. Lett. 95, 210502; See also GT and O. Gühne, Phys. Rev. Lett. 94, 060501 (2005).]
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Very many particles

Typically we cannot address the particles individually.

Expected to occur often in future experiments.

For spin-1
2 particles, we can measure the collective angular

momentum operators:

Jl := 1
2

N∑
k=1

σ(k )
l ,

where l = x, y, z and σ(k )
l a Pauli spin matrices.

We can also measure the (∆Jl)2 := 〈J2
l 〉 − 〈Jl〉

2 variances.
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Spin squeezing I.

Uncertainty relation for the spin coordinates:

(∆Jx)2(∆Jy)2 ≥ 1
4 |〈Jz〉|

2.

If (∆Jx)2 is smaller than the standard quantum limit 1
2 |〈Jz〉|

then the state is called spin squeezed.
[ M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).]

Application: Quantum metrology.

J
z
 is large

Variance of J
x 
is small

z

y
x
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Spin squeezing II.

Spin squeezing experiment with 107 atoms: [J. Hald, J. L. Sørensen, C.

Schori, and E. S. Polzik, Phys. Rev. Lett. 83, 1319 (1999)]

Spin squeezing criterion for the detection of quantum
entanglement

(∆Jx)2

〈Jy〉
2 + 〈Jz〉

2
≥

1
N
.

If a quantum state violates this criterion then it is entangled.
[A. Sørensen et al., Nature 409, 63 (2001).]
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Generalized spin squeezing criteria

Criterion 1. For separable states we have

〈J2
x 〉 + 〈J

2
y 〉 ≤

N
4

(N + 1).

This detects entangled states close to symmetric Dicke states
〈Jz〉 = 0. E.g., for N = 4-re this state is

1√
6
(|0011〉 + |0101〉 + |1001〉 + |0110〉 + |1010〉 + |1100〉).

[GT, J. Opt. Soc. Am. B 24, 275 (2007); N. Kiesel et al., Phys. Rev. Lett. 98, 063604 (2007).]

Criterion 2. For separable states

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ N/2.

The left hand side is zero for the ground state of a Heisenberg
chain. [GT, Phys. Rev. A 69, 052327 (2004).]

Criterion 3. For symmetric separable states
1 − 4〈Jm〉

2/N2 ≤ 4(∆Jm)2/N. [J. Korbicz et al. Phys. Rev. Lett. 95, 120502 (2005).]

How could we find all such criteria?
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Complete set of generalized spin squeezing
inequalities

Let us assume that for a system we know only

J := (〈Jx〉, 〈Jy〉, 〈Jz〉),

K := (〈J2
x 〉, 〈J

2
y 〉, 〈J

2
z 〉).

Then any state violating the following inequalities is entangled

〈J2
x 〉 + 〈J

2
y 〉 + 〈J

2
z 〉 ≤ N(N + 2)/4,

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ N/2,

〈J2
k 〉 + 〈J

2
l 〉 − N/2 ≤ (N − 1)(∆Jm)2,

(N − 1)
[
(∆Jk )2 + (∆Jl)2

]
≥ 〈J2

m〉 + N(N − 2)/4,

where k , l,m takes all the possible permutations of x, y, z.
[GT, C. Knapp, O. Gühne, és H.J. Briegel, Phys. Rev. Lett., in press; quant-ph/0702219.]
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The polytope

The previous inequalities, for fixed 〈Jx/y/z〉, describe a
polytope in the 〈J2

x/y/z〉 space.

Separable states correspond to points inside the polytope.
Note: Convexity comes up again!

For 〈J〉 = 0 and N = 6 the polytope is the following:
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Conclusions

We discussed why entanglement is important for quantum
information processing and also for quantum control
experiments.

We discussed entanglement detection in few particle systems.
Only local measurements are possible.

We also discussed entanglement detection in many particle
systems. The particles cannot be addressed individually and
only collective quantities can be measured. Generalized spin
squeezing inequalities can be used for entanglement
detection.

For further information please see my home page:
http://optics.szfki.kfki.hu/∼toth

*** THANK YOU ***
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