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Why spin squeezing inequalities for j > 1
2 is

important?

Many experiments are aiming to create entangled states with
many atoms.

Only collective quantities can be measured.

Most experiments use atoms with j > 1
2 .
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Many-particle systems for j=1/2

For spin-1
2 particles, we can measure the collective angular

momentum operators:

Jl := 1
2

N∑
k=1

σ
(k)

l ,

where l = x , y , z and σ(k)

l a Pauli spin matrices.

We can also measure the

(∆Jl)
2 := 〈J2

l 〉 − 〈Jl〉
2

variances.
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The standard spin-squeezing criterion

The spin squeezing criteria for entanglement detection is

(∆Jx )2

〈Jy 〉2 + 〈Jz〉2
≥

1
N
.

If it is violated then the state is entangled.
[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

States violating it are like this:

J
z
 is large

Variance of J
x 
is small

z

y
x
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Generalized spin squeezing criteria for j = 1
2

Let us assume that for a system we know only

~J := (〈Jx 〉, 〈Jy 〉, 〈Jz〉),

~K := (〈J2
x 〉, 〈J

2
y 〉, 〈J

2
z 〉).

Then any state violating the following inequalities is entangled

〈J2
x 〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤

N(N+2)
4 ,

(∆Jx )2 + (∆Jy )2 + (∆Jz)2 ≥ N
2 ,

〈J2
k 〉+ 〈J2

l 〉 ≤ (N − 1)(∆Jm)2 + N
2 ,

(N − 1)
[
(∆Jk )2 + (∆Jl)

2
]
≥ 〈J2

m〉+
N(N−2)

4 ,

where k , l ,m take all the possible permutations of x , y , z.

[GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007);
quant-ph/0702219.]



Generalized spin squeezing criteria for j = 1
2

The previous inequalities, for fixed 〈Jx/y/z〉, describe a polytope in
the 〈J2

x/y/z〉 space. The polytope has six extreme points: Ax/y/z
and Bx/y/z .

For
〈
~J
〉

= 0 and N = 6 the polytope is the following:
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Completeness

Random separable states:
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The completeness can be proved for large N .



The polytope for N = 10 and
J = (0,0,0), J = (0,0,2.5),
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Basic ideas for the j > 1
2 case

Particles with d>2 internal states.

ak for k = 1,2, ...,M denote single-particle operators with the
property Tr(akal) = Cδkl , where C is a constant.

We need the upper bound K for the inequality
∑M

k=1〈a
(n)

k 〉
2 ≤ K .

The N-qudit collective operators used in our criteria will be
denoted by

Ak =
∑

n
a(n)

k .



“Modified” quantities for j > 1
2

For the j = 1
2 case, the SSIs were developed based on the first

and second moments and variances of the such collective
operators.

For the j > 1
2 case, we define the modified second moment

〈Ã2
k 〉 := 〈A2

k 〉 − 〈
∑

n
(a(n)

k )2〉 =
∑
m,n
〈a(n)

k a(m)

k 〉

and the modified variance

(∆̃Ak )2 := (∆Ak )2 − 〈
∑

n
(a(n)

k )2〉.

These are essential to get tight equations for j > 1
2 .



Basic equation

For separable states, i.e., for states that can be written as a
mixture of product states,

(N − 1)
∑
k∈I

(∆̃Ak )2 −
∑
k<I

〈(Ãk )2〉 ≥ −N(N − 1)K

holds, where each index set I ⊆ {1,2, ...,M} defines one of the 2M

inequalities.

Note that I = ∅ and I = {1,2, ...,M} are among the possibilities.
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The inequalities for j > 1
2 with the angular

momentum coordinates
Application 1:

ak = {jx , jy , jz}.

For spin-j particles for j > 1
2 , we can measure the collective

angular momentum operators:

Jl :=
N∑

k=1

j(k)

l ,

where l = x , y , z and j(k)

l are the angular momentum coordinates
[i.e., SU(2) generators].

We can also measure the

(∆Jl)
2 := 〈J2

l 〉 − 〈Jl〉
2

variances.



The inequalities for j>1
2 with the angular

momentum coordinates II

For fully separable states of spin-j particles, all the following
inequalities are fulfilled

〈J2
x 〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤ Nj(Nj + 1),

(∆Jx )2 + (∆Jy )2 + (∆Jz)2 ≥ Nj ,

〈J̃2
k 〉+ 〈J̃2

l 〉 − N(N − 1)j2 ≤ (N − 1)(∆̃Jm)2,

(N − 1)
[
(∆̃Jk )2 + (∆̃Jl)

2
]
≥ 〈J̃2

m〉 − N(N − 1)j2,

where k , l ,m take all possible permutations of x , y , z.

Violation of any of the inequalities implies entanglement.



Completeness

In the large N limit, the inequalities with the angular momentum
are complete.

That is, it is not possible to come up with a new entanglement
conditions with based on 〈Jk 〉 and 〈J̃2

k 〉 that detect states not
detected by these inequalities.



Mapping qubit inequalities to qudits

An entanglement condition for qubits can be transformed to a
criterion for a system of N spin-j particles by the substitution

〈Jl〉 →
1
2j 〈Jl〉, 〈J̃2

l 〉 →
1

4j2 (〈J̃2
l 〉).



The usual spin squeezing inequality for j > 1
2

The standard spin-squeezing inequality becomes

(∆Jx )2

〈Jy 〉2 + 〈Jz〉2
+

∑
n(j2 − 〈(j(n)

x )2〉)

〈Jy 〉2 + 〈Jz〉2
≥

1
N
.

This inequality is violated only if there is entanglement between
the spin-j particles.

With the original inequality, there is “spin squeezing” without
entanglement between the particles.
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The inequalities for j > 1
2 with the Gk ’s

Application 2:
ak = SU(d) generators.

For spin-j particles for j > 1/2, we can measure the collective
operators:

Gl :=
N∑

k=1

g(k)

l ,

where l = 1,2, ...,d2 − 1 and g(k)

l are the SU(d) generators.

We can also measure the

(∆Gl)
2 := 〈G2

l 〉 − 〈Gl〉
2

variances.



The inequalities for j > 1
2 with the Gk ’s

The SSIs for Gk have the general form

(N − 1)
∑
k∈I

(∆̃Gk )2 −
∑
k<I

〈(G̃k )2〉 ≥ −2N(N − 1)
(d − 1)

d
.

For the d = 3 case, the SU(d) generators can be the eight
Gell-Mann matrices.

I is a subset of indices between 1 and M . We have 2M equations!
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One of the generalized spin squeezing criteria

A condition for separability is∑
k

(∆Gk )2 ≥ 2N(d − 1).

Three-body entanglement can also be detected based on a higher
violation of the inequality.

[ G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth,
Optimal spin squeezing inequalities for arbitrary spin,
arXiv:1104.3147. ]



Advantages of criteria for j > 1
2

Most atoms have j > 1
2 . No need to create spin-1/2 subsystems

artificially

Manipulation is possible with magnetic fields rather than with
lasers.

New experiments can be proposed.
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Singlet creation with cold atomic clouds

T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Generation of macroscopic singlet states
in atomic ensembles

Géza Tóth1,2,3,5 and Morgan W Mitchell4
1 Department of Theoretical Physics, The University of the Basque Country,
PO Box 644, E-48080 Bilbao, Spain
2 IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
3 Research Institute for Solid State Physics and Optics,
Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest, Hungary
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New Journal of Physics 12 (2010) 053007 (12pp)
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Abstract. We study squeezing of the spin uncertainties by quantum non-
demolition (QND) measurement in non-polarized spin ensembles. Unlike the
case of polarized ensembles, the QND measurements can be performed with
negligible back-action, which allows, in principle, perfect spin squeezing as
quantified by Tóth et al (2007 Phys. Rev. Lett. 99 250405). The generated
spin states approach many-body singlet states and contain a macroscopic
number of entangled particles even when individual spin is large. We introduce
the Gaussian treatment of unpolarized spin states and use it to estimate the
achievable spin squeezing for realistic experimental parameters. Our proposal
might have applications for magnetometry with a high spatial resolution or
quantum memories storing information in decoherence free subspaces.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 12 (2010) 053007
1367-2630/10/053007+12$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft



Singlet creation with cold atomic clouds

3

robust to decoherence, and produces a many-atom singlet state. Unlike standard spin squeezing,
the method creates entanglement even in the limit of very strong interaction, which might be
used in experimental implementations with cavities [20, 21], or in any multi-atomic system
in which a von Neumann measurement of the collective spin is possible. We demonstrate the
validity of the Gaussian approximation for unpolarized spin states. For the lossless case, we
confirm our finding with comparison to the exact model.

The paper is organized as follows. In section 2, we present the spin squeezing parameter
to detect the entanglement of many-body singlet states and also discuss the properties of the
singlets we aim to prepare. In section 3, we describe the squeezing process. First, we consider
the lossless case and present a model based on a Gaussian approximation. Later, we include
decoherence in the model. For the lossless case, we compare our results to the results of the
exact model. In the appendix, we present the details of the calculations for the exact model.

2. Detecting the entanglement of singlet states

In this paper, we will use the generalized spin squeezing parameter

ξ 2
s :=

(1Jx)
2 + (1Jy)

2 + (1Jz)
2

J
, (1)

where Jl are the components of the collective angular momentum, (1Jl)
2
= 〈J 2

l 〉 − 〈Jl〉
2, and

for a system of N spin- j particles we define J := N j . It has already been shown in [22]–[26]
that any state giving ξs < 1 is entangled (i.e. not fully separable). For completeness, we present
briefly the proof for (1). For pure product states of the form |9p〉 = ⊗

N
k=1|ψk〉, we have∑

l=x,y,z

(1Jl)
2
=

∑
l=x,y,z

N∑
k=1

(1 j (k)l )2
|ψk〉
> N j, (2)

where j (k)l denotes the spin coordinates of particle (k) for l = x, y and z. Here, we used the fact
that

∑
l(1 j (k)l )2

|ψk〉
> j . For a mixture of pure product states, i.e. for separable states, (2) remains

true since the variance is concave in the state.
The states giving ξs = 0 are called many-body singlet states [27]. In particular, an equal

mixture of all pure singlets, expected to arise in permutationally invariant systems, has intriguing
entanglement properties [22, 24, 25]. The bipartite entanglement of this state has already been
determined for qubits [28]. It is very mixed, yet its entanglement is robust to noise [26]. For
qubits, the singlet state studied in this paper is an equal mixture of all states composed of two-
qubit singlets as can be seen in figure 1.

For an imperfect realization, Nξ 2
s gives an upper bound on the number of particles

unentangled with other particles [24, 25]. This can be seen as follows. Let us consider a pure
state of the form ⊗

M
k=1|ψk〉 ⊗ |ψM+1,...,N 〉, which has M particles unentangled with the rest. For

such a state, we have

(1Jl)
2
=

M∑
k=1

(1 j (k)l )2
|ψk〉

+

[
1

(
N∑

k=M+1

j (k)l

)]2

|ψM+1,...,N 〉

. (3)

Hence,

(1Jx)
2 + (1Jy)

2 + (1Jz)
2 >

M∑
k=1

(
1 j (k)x

)2

|ψk〉
+
(
1 j (k)y

)2

|ψk〉
+
(
1 j (k)z

)2

|ψk〉
> M j. (4)

New Journal of Physics 12 (2010) 053007 (http://www.njp.org/)



Singlet creation with cold atomic clouds
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3x3 correlation matrices instead of 2x2 ones

6

For modeling the QND pulse, the atoms are described by the Jl operators, while the light
pulse is characterized by the Stokes operators Sl [13, 17]. We choose the initial state to be the
completely mixed atomic state, %0 := (1/(2 j + 1)N )1, and a fully polarized optical state with
〈S〉 = (S0, 0, 0). The full system is described by the operators

R =

{
Jx

√
J
,

Jy
√

J
,

Jz
√

J
,

Sx
√

S0
,

Sy
√

S0
,

Sz
√

S0

}
(7)

with a covariance matrix

0mn := 1
2〈Rm Rn + Rn Rm〉 − 〈Rm〉〈Rn〉. (8)

As shown by simple calculations, for large N the initial state is Gaussian for the Rk operators.
That is, symmetric moments with order higher than the second can be obtained from lower-order
ones according to the theory of Gaussian distributions, knowing that cumulants with order three
and higher are zero [41]. In other words, concerning the moments of Rk, the state is completely
characterized by 0, 〈S〉 and 〈J〉.

The first step of the QND measurement of Jx is interaction between the atoms and light via
the Hamiltonian

H = h̄�Jx Sz. (9)

This suggests a characteristic time scale [12]

τ :=
1

�
√

S0 J
. (10)

The dynamical equations of 0mn can be obtained from the Heisenberg equation of motion for
the operators Rk given as

R(out)
k = R(in)

k − it[R(in)
k , H ], (11)

with h̄ = 1. For example, the dynamics of R5 is obtained as

R(out)
5 = R(in)

5 +
κ

√
S0

R(in)
4 R(in)

1 , (12)

where the coupling constant is defined as κ := t
τ
. Hence, for the dynamics of the square of R5,

we obtain〈
(R(out)

5 )2
〉
=

〈
(R(in)

5 )2
〉

+
κ2

S0

〈
(R(in)

4 )2(R(in)
1 )2

〉
+

κ
√

S0

〈
R(in)

1 {R(in)
4 , R(in)

5 }+

〉
, (13)

where {A, B}+ is the anticommutator of A and B. Knowing that due to symmetries of the setup
for all times 〈Rk〉 = 0 for k = 1, 2, 3, 5 and 6 we obtain for the variance of R5〈
(1R(out)

5 )2
〉
=

〈
(1R(in)

5 )2
〉

+
κ2

S0

〈
(1R(in)

4 )2(1R(in)
1 )2

〉
+
κ2

S0

〈
R(in)

4

〉2〈
(1R(in)

1 )2
〉

+
κ

√
S0

〈
1R(in)

1 {1R(in)
4 ,1R(in)

5 }+

〉
+

2κ
√

S0

〈
1R(in)

1 1R(in)
5

〉〈
R(in)

4

〉
, (14)

where we used the notation 1Rk := Rk − 〈Rk〉.
Let us now consider dynamics for t . τ . Knowing that 〈R4〉 =

√
S0 for t = 0 and

〈1Rk1Rl1Rm · · ·〉. 1, we can examine how the different terms depend on S0. We find that

New Journal of Physics 12 (2010) 053007 (http://www.njp.org/)



Differential magnetometry with singlets

The singlet is invariant under homogenous magnetic fields. It can
be used to measure the field gradient with a single cloud.

I. Urizar-Lanz, P. Hyllus, I. Egusquiza, M.W. Mitchell, G. Tóth,
Differential magnetometry with multiparticle singlets,
arxiv:1203.3797.
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Permutationally invariant tomography

Permutationally Invariant Quantum Tomography

G. Tóth,1,2,3 W. Wieczorek,4,5,* D. Gross,6 R. Krischek,4,5 C. Schwemmer,4,5 and H. Weinfurter4,5
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We present a scalable method for the tomography of large multiqubit quantum registers. It acquires

information about the permutationally invariant part of the density operator, which is a good approxi-

mation to the true state in many relevant cases. Our method gives the best measurement strategy to

minimize the experimental effort as well as the uncertainties of the reconstructed density matrix. We apply

our method to the experimental tomography of a photonic four-qubit symmetric Dicke state.

DOI: 10.1103/PhysRevLett.105.250403 PACS numbers: 03.65.Wj, 03.65.Ud, 42.50.Dv

Because of the rapid development of quantum experi-
ments, it is now possible to create highly entangled multi-
qubit states using photons [1–5], trapped ions [6], and cold
atoms [7]. So far, the largest implementations that allow
for an individual readout of the particles involve on the
order of 10 qubits. This number will soon be overcome, for
example, by using several degrees of freedom within each
particle to store quantum information [8]. Thus, a new
regime will be reached in which a complete state tomog-
raphy is impossible even from the point of view of the
storage place needed on a classical computer. At this point
the question arises: Can we still extract useful information
about the quantum state created?

In this Letter we propose permutationally invariant
(PI) tomography in multiqubit quantum experiments [9].
Concretely, instead of the density matrix %, we propose to
determine the PI part of the density matrix defined as

%PI ¼ 1

N!

X
k

�k%�k; (1)

where �k are all the permutations of the qubits.
Reconstructing %PI has been considered theoretically for
spin systems (see, e.g., Ref. [10]). Recently it has been
pointed out that photons in a single mode optical fiber will
always be in a PI state and that there is only a small set of
measurements needed for their characterization [11,12].

Here, we develop a provably optimal scheme, which is
feasible for large multiqubit systems: For our method, the
measurement effort increases only quadratically with the
size of the system. Our approach is further motivated by
the fact that almost allmultipartite experiments are donewith
PI quantum states [2–4,6]. Thus, the density matrix obtained
from PI tomography is expected to be close to the one of the
experimentally achieved state. The expectation values of
symmetric operators, such as some entanglement witnesses,
and fidelities with respect to symmetric states are the same

for both density matrices and are thus obtained exactly from
PI tomography [2–4]. Finally, if %PI is entangled, so is the
state % of the system, which makes PI tomography a useful
and efficient tool for entanglement detection.
Below, we summarize the four main contributions of this

Letter. We restrict our attention to the case of N qubits—
higher-dimensional systems can be treated similarly.
(1) In most experiments, the qubits can be individually

addressed whereas nonlocal quantities cannot be measured
directly. The experimental effort is then characterized by
the number of local measurement settings needed, where
‘‘setting’’ refers to the choice of one observable per qubit,
and repeated von Neumann measurements in the observ-
ables’ eigenbases [13]. Here, we compute the minimal
number of measurement settings required to recover %PI.
(2) The requirement that the number of settings be

minimal does not uniquely specify the tomographic proto-
col. On the one hand, there are infinitely many possible
choices for the local settings that are both minimal and
give sufficient information to find %PI. On the other hand,
for each given setting, there are many ways of estimating
the unknown density operator from the collected data. We
present a systematic method to find the optimal scheme
through statistical error analysis.
(3) Next, we turn to the important problem of gauging

the information loss incurred due to restricting attention to
the PI part of the density matrix. We describe an easy test
measurement that can be used to judge the applicability of
PI tomography before it is implemented.
(4) Finally, we demonstrate that these techniques are

viable in practice by applying them to a photonic experi-
ment observing a four-qubit symmetric Dicke state.
Minimizing the number of settings.—We will now

present our first main result.
Observation 1. For a system of N qubits, permuta-

tionally invariant tomography can be performed with
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Permutationally invariant tomography II

For full state tomography, the number of measurements scales
exponentially in N .

Permutationally invariant part of the density matrix:

%PI =
1

N!

∑
Πk%Π†k ,

where Πk are all the permutations of the qubits.

[ G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter,
Permutationally invariant quantum tomography, Phys. Rev. Lett. 105, 250403 (2010);
arxiv:1005.3313. ]



Main results

Features of our method:

1 Is for spatially separated qubits.

2 Needs the minimal number of measurement settings.

3 Uses the measurements that lead to the smallest uncertainty
possible of the elements of %PI.

4 Gives an uncertainty for the recovered expectation values and
density matrix elements.

5 If %PI is entangled, so is %. Can be used for entanglement
detection.

6 Fitting of physical states can also be scaleable.
[ T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum, S. Gaile, O.
Gühne, and H. Weinfurter, Permutationally invariant state reconstruction, New J.
Phys, Focus issue on Quantum Tomography, in press; arxiv:1205.4941. ]



Experiments: 4 qubits (PRL 2010) and 6 qubits (in
preparation)

Experiments in the Weinfurther group, München.
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Quantum metrology

Quantum Fisher information and multipartite entanglement

G. Tóth, Multipartite entanglement and high precision metrology, Phys.
Rev. A 85, 022322 (2012); arxiv:1006.4368. See similar work of P.
Hyllus et al.

Quantum Fisher information as the convex roof of the variance.
Collaboration with Dénes Petz, Rényi Institute for Mathematics.

G. Tóth and D. Petz, Optimal generalized variance and quantum Fisher
information, arxiv:1109.2831.

FQ[%,A] = inf
pk ,Ψk

∑
k

pk (∆A)2
Ψk
. (3)
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Summary

We presented a full set of generalized spin squeezing inequalities
with the angular momentum coordinates for j>1/2.

We presented a large set of inequalities with the other collective
operators that can be measured.
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