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Motivation

In many quantum control experiments the qubits cannot be
individually accessed. We still would like to detect
entanglement.

The spin squeezing criterion is already known. Are there
other similar criteria that detect entanglement with the first
and second moments of collective observables?
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From squeezing to spin squeezing

The variances of the two quadrature components are bounded

(∆x)2(∆p)2 ≥ const .

Coherent states saturate the inequality.

Squeezed states are the states for which one of the
quadrature components have a smaller variance than for a
coherent state.

⇒

Can one use similar ideas for spin systems?
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Spin squeezing

The variances of the angular momentum components are
bounded

(∆Jx)2(∆Jy)2 ≥ 1
4 |〈Jz〉|

2.

If (∆Jx)2 is smaller than the standard quantum limit |〈Jz〉|
2 then

the state is called spin squeezed.

In practice this means that the angular momentum of the state
has a small variance in one direction, while in an orthogonal
direction the angular momentum is large.
[M. Kitagawa and M. Ueda, PRA 47, 5138 (1993).]
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Definition: Entanglement

Fully separable states are states that can be written in the
form

ρ =
∑

l

plρ
(1)
l ⊗ ρ

(2)
l ⊗ ... ⊗ ρ

(N)
l ,

where
∑

l pl = 1 and pl > 0.

A state is entangled if it is not separable.

Note that one could also look for other type of entanglement in
many-particle systems, e.g., entanglement in the two-qubit
reduced density matrix.
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Definition: Collective quantities

What if we cannot address the particles individually? This is
expected to occur often in future experiments.

For spin-1
2 particles, we can measure the collective angular

momentum operators:

Jl := 1
2

N∑
k=1

σ(k )
l ,

where l = x, y, z and σ(k )
l a Pauli spin matrices. We can also

measure the (∆Jl)2 := 〈J2
l 〉 − 〈Jl〉

2 variances.
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The standard spin-squeezing criterion

The spin squeezing criteria for entanglement detection is

(∆Jx)2

〈Jy〉
2 + 〈Jz〉

2
≥

1
N
.

If it is violated then the state is entangled.
[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

States violating it are like this:

J
z
 is large

Variance of J
x 
is small

z

y
x
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Generalized spin squeezing entanglement criteria I

Separable states must fulfill

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ N
2 .

It is maximally violated by a many-body singlet, e.g., the
ground state of an anti-ferromagnetic Heisenberg chain.
[GT, PRA 69, 052327 (2004).]

For such a state
〈Jm

k 〉 = 0.

Note that there are very many states giving zero for the left
hand side. The mixture of all such states also maximally
violates the criterion.

Note that a similar inequality works also for a lattice of spins
larger than 1

2 . [GT, PRA 69, 052327 (2004).]

Related approach: Detecting entanglement by susceptibility
measurements. [M. Wieśniak, V. Vedral, and Č. Brukner, NJP 7, 258 (2005).] 11 / 36



Generalized spin squeezing entanglement criteria II

For states with a separable two-qubit density matrix(
〈J2

k 〉 + 〈J
2
l 〉 −

N
2

)2
+ (N − 1)2〈Jm〉

2 ≤ 〈J2
m〉 +

N(N−2)
4

holds.
[J. Korbicz, I. Cirac, M. Lewenstein, PRL 95, 120502 (2005).]

Detects all symmetric two-qubit entangled states; can be used
to detect symmetric Dicke states.

Used in ion trap experiment.
[J. Korbicz, O. Gühne, M. Lewenstein, H. Häffner, C.F. Roos, R. Blatt, PRA 74, 052319 (2005).]
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Generalized spin squeezing entanglement criteria III

For separable states [GT, J. Opt. Soc. Am. B 24, 275 (2007).]

〈J2
x 〉 + 〈J

2
y 〉 ≤

N(N+1)
4

holds.

This can be used to detect entanglement close to N-qubit
symmetric Dicke states with N

2 excitations. For such a state

〈Jk 〉 = 0,

〈J2
z 〉 = 0,

〈J2
x/y〉 =

N(N+2)
8 .

For N = 4, this state looks like

|Ψ〉 = 1√
6
(|1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉).

This was realized with photons.
[N. Kiesel, C. Schmid, GT, E. Solano, H. Weinfurter, PRL 98, 063604 (2007).]
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Optimal spin squeezing inequalities

Let us assume that for a system we know only

J := (〈Jx〉, 〈Jy〉, 〈Jz〉),

K := (〈J2
x 〉, 〈J

2
y 〉, 〈J

2
z 〉).

Then any state violating the following inequalities is entangled

〈J2
x 〉 + 〈J

2
y 〉 + 〈J

2
z 〉 ≤

N(N+2)
4 ,

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ N
2 ,

〈J2
k 〉 + 〈J

2
l 〉 ≤ (N − 1)(∆Jm)2 + N

2 ,

(N − 1)
[
(∆Jk )2 + (∆Jl)2

]
≥ 〈J2

m〉 +
N(N−2)

4 ,

where k , l,m take all the possible permutations of x, y, z.

[GT, C. Knapp, O. Gühne, és H.J. Briegel, PRL 99, 250405 (2007); quant-ph/0702219.]
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Derivation of the equations

Criterion 2
(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ N

2 ,

Proof: For product states

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 =
∑

k

(∆j(k )
x )2 + (∆j(k )

y )2 + (∆j(k )
z )2 ≥ N

2 .

It is also true for separable states due to the convexity of
separable states.

Criterion 3

〈J2
k 〉 + 〈J

2
l 〉 ≤ (N − 1)(∆Jm)2 + N

2 ,

Proof: For product states

(N − 1)(∆Jx)2 + N
2 − 〈J

2
y 〉 − 〈J

2
z 〉 = (N − 1)

(
N
4 −

1
4

∑
k

x2
k

)
−1

4

∑
k,l

yk yl + zk zl = .... ≥ 0.

Here xk = 〈σ
(k )
x 〉 and we have to use (

∑
k sk )2 ≤ N

∑
k sk . 16 / 36



The polytope

The previous inequalities, for fixed 〈Jx/y/z〉, describe a
polytope in the 〈J2

x/y/z〉 space. The polytope has six extreme
points: Ax/y/z and Bx/y/z .

For 〈J〉 = 0 and N = 6 the polytope is the following:
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The polytope II: Numerics

Random separable states:

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

<J
x
2>

<
J z2 >

0

2

4 0 1 2 3 4

0

1

2

3

4

<J
y
2>

<J
x
2>

<
J z2 >

18 / 36



The polytope III: Extreme points

The coordinates of the extreme points are

Ax :=
[
N2

4
− κ(〈Jy〉

2 + 〈Jz〉
2),

N
4
+ κ〈Jy〉

2,
N
4
+ κ〈Jz〉

2
]
,

Bx :=
〈Jx〉

2 +
〈Jy〉

2 + 〈Jz〉
2

N
,
N
4
+ κ〈Jy〉

2,
N
4
+ κ〈Jz〉

2
 ,

where κ := (N − 1)/N. The points Ay/z and By/z can be
obtained from these by permuting the coordinates.

Now it is easy to prove that an inequality is a necessary
condition for separability: All the six points must satisfy it.
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The polytope IV: Separable states fill the polytope

Let us take the 〈J〉 = 0 case first.

Then the state corresponding to Ax is the equal mixture of

| + 1,+1,+1,+1, ...〉x

and
| − 1,−1,−1,−1, ...〉x .

The state corresponding to Bx is

| + 1〉
⊗

N
2

x ⊗ | − 1〉
⊗

N
2

x .

Separable states corresponding to Ay/z and By/z are defined
similarly.
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The polytope V

General case: 〈J〉 , 0.

A separable state corresponding to Ax is

ρAx = p(|ψ+〉〈ψ+|)⊗N + (1 − p)(|ψ−〉〈ψ−|)⊗N .

Here |ψ+/−〉 are the single qubit states with Bloch vector
coordinates (〈σx〉, 〈σy〉, 〈σz〉) = (±cx , 2〈Jy〉/N, 2〈Jz〉/N) where

cx :=
√

1 − 4(〈Jy〉
2 + 〈Jz〉

2)/N2. The mixing ratio is defined as
p := 1/2 + 〈Jx〉/(Ncx).

If N1 := Np is an integer, we can also define the state
corresponding to the point Bx as

|φBx 〉 = |ψ+〉
⊗N1 ⊗ |ψ−〉

⊗(N−N1).

If N1 is not an integer then one can find a point B′x such that
such that its distance from Bx is smaller than 1

4 .
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In what sense is the characterization complete?

For any value of J there are separable states corresponding to
Ax/y/z .

For certain values of J and N (e.g., J = 0 and even N) there
are separable states corresponding to points Bx/y/z .

However, there are always separable states corresponding to
points B′x/y/z such that their distance from Bx/y/z is smaller

than 1
4 .

In the limit N → ∞ for a fixed normalized angular momentum
J

N/2 the sides of the polytope grow as N2.

The relative difference between the volume of our polytope
and the volume of set of points corresponding to separable
states decreases with N as N−2, hence in the macroscopic
limit the characterization is complete.
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Polytope for various values for J

The polytope for N = 10 and
J = (0, 0, 0), J = (0, 0, 2.5),

0 5 10 15 20 25

0

10

20

0

5

10

15

20

25

〈 J2
x
 〉

〈 J2
y
 〉

〈 J
2 z 〉

0 5 10 15 20 25

0

10

20

0

5

10

15

20

25

〈 J2
x
 〉

〈 J2
y
 〉

〈 J
2 z 〉

and J = (0, 0, 4.5).

0 5 10 15 20 25

0

10

20

0

5

10

15

20

25

〈 J2
x
 〉

〈 J2
y
 〉

〈 J
2 z 〉

23 / 36



Our inequalities vs. the standard spin squeezing
criterion

The standard spin squeezing criterion

(∆Jz)2

〈Jx〉
2 + 〈Jy〉

2
≥

1
N

is satisfied by all points Ak and Bk , for Bz even equality holds.
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Polytope for N = 10 and J = (1.5, 0, 2.5). States that are
detected by the standard criterion are below the red plane.
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Our inequalities vs. the Korbicz-Cirac-Lewenstein
inequalities

For states with a separable two-qubit density matrix(
〈J2

k 〉 + 〈J
2
l 〉 −

N
2

)2
+ (N − 1)2〈Jm〉

2 ≤ 〈J2
m〉 +

N(N−2)
4

holds. [J. Korbicz et al. PRL 95, 120502 (2005).]
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Polytope for N = 10 and J = (0, 0, 0). States that are detected
by the KCL criterion are below the plane. The plane contains
two of the three Ak points.
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Correlation matrix

Our inequalities can be reexpressed with the correlation
matrix.

Basic definitions:

Ckl := 1
2 〈Jk Jl + JlJk 〉,

γkl := Ckl − 〈Jk 〉〈Jl〉.

With them we define the interesting quantity

X := (N − 1)γ + C .
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Correlation matrix II

Now we can rewrite our inequalities as

Tr(X) ≤ N2(N+2)
4 − (N − 1)|J|2,

Tr(X) ≥ N2

2 + |J|
2,

λmin(X) ≥ 1
N Tr(X) + N−1

N |J|
2 − N

2 ,

λmax(X) ≤ N−1
N Tr(X) − N−1

N |J|
2 −

N(N−2)
4 ,

For fixed |J| these equations describe a polytope in the space
of the three eigenvalues of X.

These new inequalities detect all entangled quantum states
that can be detected based on knowing the correlation matrix
and J.
[GT, C. Knapp, O. Gühne, and H.J. Briegel, arXiv:0806.1048.]
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Two-qubit entanglement

Our criteria can detect entangled states for which the reduced
two-qubit density matrix is separable.

This might look surprising since all our criteria contain
operator expectation values that can be computed knowing
the average two-qubit density matrix

ρ12 :=
1

N(N − 1)

∑
k,l

ρkl ,

and no information on higher order correlation is used.

Still, our criteria do not merely detect entanglement in the
reduced two-qubit state!

29 / 36



Two-qubit entanglement II

Two-qubit symmetric separable states have the form

ρ12 =
∑

k

pkρk ⊗ ρk .

For such states it is always possible to find an N-qubit
separable state, which has ρ12 as it reduced state:

ρ =
∑

k

pkρk ⊗ ρk ⊗ ... ⊗ ρk .

Note the connection to the representability problem.

However, there are two-qubit separable states for which this is
not possible. For example, these can be of the form

ρ12 =
1
2 (ρ1 ⊗ ρ2 + ρ2 ⊗ ρ1).

Clearly, it is not easy to find an N-qubit state for such a state.
30 / 36



Two-qubit entanglement III

From the previous discussion it follows the following:

For symmetric states, the violation of any entanglement
criterion with 〈Jk 〉 and 〈J2

k 〉 implies the entanglement of the
reduced two-qubit density matrix.

This was found by Wang and Sanders for the standard
spin-squeezing inequality.
[X. Wang and B.C. Sanders, PRA 68, 012101 (2003).]
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Bound entanglement in spin chains

Let us consider four spin-1/2 particles, interacting via the
Hamiltonian

H = (h12 + h23 + h34 + h41) + J2(h13 + h24),

where hij = σ
(i)
x ⊗ σ

(j)
x + σ

(i)
y ⊗ σ

(j)
y + σ

(i)
z ⊗ σ

(j)
z is a Heisenberg

interaction between the qubits i, j.

For the above Hamiltonian we compute the thermal state
%(T , J2) ∝ exp(−H/kT ) and investigate its separability
properties.

For several separability criteria we calculate the maximal
temperature, below which the criteria detect the states as
entangled.
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Bound entanglement in spin systems II

Bound temperatures for entanglement

 2

 4

 6

 8

 10

 12

 14

-2 -1  0  1  2  3

kT

J2

Spin Squeezing
PPT[1|234]
PPT[12|34]
PPT[13|24]

Permutations
Best CCN

For J2 & −0.5, the spin squeezing inequality is the strongest
criterion for separability. It allows to detect entanglement even if
the state has a positive partial transpose (PPT) with respect to all
bipartition.
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Bound entanglement in spin systems III

We found bound entanglement that is PPT with respect to all
bipartitions in XY and Heisenberg chains, and also in XY and
Heisenberg models on a completely connected graph, up to
10 qubits.

Thus for these models, which appear in nature, there is a
considerable temperature range in which the system is
already PPT but not yet separable.
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Bound entanglement in spin systems IV

Simple example: Heisenberg system on a fully connected
graph

H = J2
x + J2

y + J2
z =

3N
4
+

1
4

∑
k,l

σ(k )
x σ(l)

x + σ
(k )
y σ(l)

y + σ
(k )
z σ(l)

z .

The ground state is very mixed: For large temperature range it
is PPT bound entangled.

The thermodynamics of this system can be computed
analytically. Optimal spin squeezing inequalities are violated
for T < N. [GT, PRA 71, 010301(R) (2005).]

35 / 36



Conclusions

We presented a family of entanglement criteria that are able
to detect any entangled state that can be detected based on
the first and second moments of collective angular momenta.

We explicitly determined the set of points corresponding to
separable states in the space of first and second order
moments.

We applied our findings to examples of spin models, showing
the presence of bound entanglement in these models.

Presentation based on:
GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405
(2007); Recent results: arXiv:0806.1048.
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