Permutationally invariant quantum tomography

G. Tóth^{1,2,3}, W. Wieczorek^{4,5}, D. Gross⁶, R. Krischek^{4,5}, C. Schwemmer^{4,5}, and H. Weinfurter^{4,5}

¹Theoretical Physics, The University of the Basque Country, Bilbao, Spain
 ²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ³Research Institute for Solid State Physics and Optics, Budapest, Hungary
 ⁴Max-Planck-Institut für Quantenoptik, Garching, Germany
 ⁵Department für Physik, Ludwig-Maximilians-Universität, München, Germany
 ⁶Institute for Theoretical Physics, Leibniz University Hannover, Hannover, Germany

ICTP, Trieste, 24 February 2011

1 Motivation

- Why quantum tomography is important?
- 2 Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements

Full quantum state tomography

- Basic ideas and scaling
- Experiments
- Approaches to solve the scalability problem
- Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state
- 5 Extra slide 1: Number of settings

- Many experiments aiming to create many-body entangled states.
- Quantum state tomography can be used to check how well the state has been prepared.
- However, the number of measurements scales exponentially with the number of qubits.

State-of-the-art in experiments

• 14 qubits with trapped cold ions T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Haensel, M. Hennrich, R. Blatt, arxiv:1009.6126, 2010.

10 qubits with photons

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, Nature Physics, 6, 331 (2010).

1) Motiv

Motivation

Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems

- Physical systems
- Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
 - Approaches to solve the scalability problem
- Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state
- 5 Extra slide 1: Number of settings

Definition

A single local measurement setting is the basic unit of experimental effort.

A local setting means measuring operator $A^{(k)}$ at qubit k for all qubits.

$$A^{(1)}$$
 $A^{(2)}$ $A^{(3)}$... $A^{(N)}$

• All two-qubit, three-qubit correlations, etc. can be obtained.

 $\langle A^{(1)}A^{(2)}\rangle, \langle A^{(1)}A^{(3)}\rangle, \langle A^{(1)}A^{(2)}A^{(3)}\rangle...$

Motivatior

Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems

- Physical systems
- Local measurements

Full quantum state tomography

- Basic ideas and scaling
- Experiments

Approaches to solve the scalability problem

- Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state
- 5 Extra slide 1: Number of settings

Full quantum state tomography

• The density matrix can be reconstructed from 3^N measurement settings.

• Note again that the number of measurements scales exponentially in *N*.

Motivation

Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems

- Physical systems
- Local measurements

Full quantum state tomography

- Basic ideas and scaling
- Experiments

Approaches to solve the scalability problem

- Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state

5 Extra slide 1: Number of settings

Experiments with ions and photons

- H. Haeffner, W. Haensel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Koerber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643-646 (2005).
- N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98, 063604 (2007).

Motivation

Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems

- Physical systems
- Local measurements

Full quantum state tomography

- Basic ideas and scaling
- Experiments

Approaches to solve the scalability problem

- Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state

5 Extra slide 1: Number of settings

Approaches to solve the scalability problem

 If the state is expected to be of a certain form (MPS), we can measure the parameters of the ansatz.
 S.T. Flammia *et al.*, arxiv:1002.3839; M. Cramer, M.B. Plenio, arxiv:1002.3780; O. Landon-Cardinal *et al.*, arxiv:1002.4632.

• If the state is of low rank, we need fewer measurements. D. Gross et al., Phys. Rev. Lett. 105, 150401 (2010).

We make tomography in a subspace of the density matrices (our approach).

Permutationally invariant part of the density matrix

Permutationally invariant part of the density matrix:

$$\varrho_{\rm PI} = \frac{1}{N!} \sum \Pi_k \varrho \Pi_{k,}^{\dagger}$$

where Π_k are all the permutations of the qubits.

- Related literature: Reconstructing *ρ*_{PI} for spin systems.
 [G. M. D'Ariano *et al.*, J. Opt. B 5, 77 (2003).]
- Photons in a single mode optical fiber are always in a permutationally invariant state. Small set of measurements are needed for their characterization (experiments).
 [R.B.A. Adamson *et al.*, Phys. Rev. Lett. **98**, 043601 (2007); R.B.A. Adamson *et al.*, Phys. Rev. A 2008; L. K. Shalm *et al.*, Nature **457**, 67 (2009).]

Features of our method:

- Is for spatially separated qubits.
- In the minimal number of measurement settings.
- Solution Uses the measurements that lead to the smallest uncertainty possible of the elements of ρ_{PI} .
- Gives an uncertainty for the recovered expectation values and density matrix elements.
- If *ρ*_{PI} is entangled, so is *ρ*. Can be used for entanglement detection!

Measurements

We measure the same observable A_j on all qubits. (Necessary for optimality.)

$$A_{j} \quad A_{j} \quad A_{j} \quad A_{j} \quad \dots \quad A_{j}$$

• Each qubit observable is defined by the measurement directions \vec{a}_j using $A_j = a_{j,x}X + a_{j,y}Y + a_{j,z}Z$.

Number of measurement settings:

$$\mathcal{D}_N = \binom{N+2}{N} = \frac{1}{2}(N^2 + 3N + 2).$$

We obtain the expectation values for

$$\langle (A_j^{\otimes (N-n)}\otimes \mathbb{1}^{\otimes n})_{\mathrm{PI}}
angle$$

for $j = 1, 2, ..., D_N$ and n = 0, 1, ..., N.

A Bloch vector element can be obtained as

$$\underbrace{\langle (X^{\otimes k} \otimes Y^{\otimes l} \otimes Z^{\otimes m} \otimes \mathbb{1}^{\otimes n})_{\text{PI}} \rangle}_{\text{Bloch vector elements}} = \sum_{j=1}^{\mathcal{D}_N} \underbrace{c_j^{(k,l,m)}}_{\text{coefficients}} \times \underbrace{\langle (A_j^{\otimes (N-n)} \otimes \mathbb{1}^{\otimes n})_{\text{PI}} \rangle}_{\text{Measured data}}$$

• Coefficients are not unique if n > 0.

The uncertainty of the reconstructed Bloch vector element is

$$\mathcal{E}^2[(X^{\otimes k}\otimes Y^{\otimes l}\otimes Z^{\otimes m}\otimes \mathbb{1}^{\otimes n})_{\mathrm{PI}}] = \sum_{j=1}^{\mathcal{D}_N} |c_j^{(k,l,m)}|^2 \mathcal{E}^2[(A_j^{\otimes (N-n)}\otimes \mathbb{1}^{\otimes n})_{\mathrm{PI}}].$$

• For a fixed set of *A_j*, we have a formula to find the $c_j^{(k,l,m)}$'s giving the minimal uncertainty.

 We have to find D_N measurement directions d_j on the Bloch sphere minimizing the variance

$$(\mathcal{E}_{\text{total}})^2 = \sum_{k+l+m+n=N} \mathcal{E}^2 \left[(X^{\otimes k} \otimes Y^{\otimes l} \otimes Z^{\otimes m} \otimes \mathbb{1}^{\otimes n})_{\text{PI}} \right] \times \left(\frac{N!}{k! l! m! n!} \right)$$

Obtaining the "total uncertainty" for given measurements

=

$$\varrho_0, \text{ the state we expect } \\
A_i, \text{ what we measure }$$

$$\Rightarrow$$
 BOX #1 \Rightarrow $(\mathcal{E}_{total})^2$

Evaluating the experimental results

$$\begin{array}{c} \text{measurement results} \\ A_j \end{array} \right\} \Rightarrow \text{BOX #2} \Rightarrow \begin{cases} \text{Bloch vector elements} \\ \text{variances} \end{cases}$$

How much is the information loss?

Estimation of the fidelity $F(\varrho, \varrho_{\rm PI})$:

$$F(\varrho, \varrho_{\mathrm{PI}}) \geq \langle \boldsymbol{P}_{\mathrm{s}} \rangle_{\varrho}^{2} \equiv \langle \boldsymbol{P}_{\mathrm{s}} \rangle_{\varrho_{\mathrm{PI}}}^{2},$$

where $P_{\rm s}$ is the projector to the *N*-qubit symmetric subspace.

- $F(\varrho, \varrho_{\rm PI})$ can be estimated only from $\varrho_{\rm PI}$!
- Proof: using the theory of angular momentum for qubits.
- Similar formalism appear concerning handling multi-copy qubit states:

[J. I. Cirac, A. K. Ekert, C. Macchiavello, Optimal purification of single qubits PRL 1999.]

[E. Bagan et al., PRA 2006;

G. Sentís, E. Bagan, J. Calsamiglia, R. Muñoz-Tapia, Multi-copy programmable discrimination of general qubit states, PRA 2010.]

 Let us assume that we want to know only the expectation values of operators of the form

 $\langle A(\phi)^{\otimes N} \rangle$

where

$$A(\phi) = \cos(\phi)\sigma_x + \sin(\phi)\sigma_y.$$

• The space of such operators has dimension N + 1. We have to choose $\{\phi_j\}_{j=1}^{N+1}$ angles for the $\{A_j\}_{j=1}^{N+1}$ operators we have to measure.

Simple example: XY PI tomography II

Let us assume that we measure

$$\langle A_j^{\otimes N}\rangle$$

for
$$j = 1, 2, ..., N + 1$$
.

Reconstructed values and uncertainties

$$\underbrace{\langle A(\phi)^{\otimes N} \rangle}_{j=1} = \sum_{j=1}^{N+1} \underbrace{c_j^{(\phi)}}_{j} \times \underbrace{\langle A_j^{\otimes N} \rangle}_{Measured data}$$
Reconstructed coefficients Measured data
$$\mathcal{E}^2[A(\phi)] = \sum_{j=1}^{N+1} |c_j^{(\phi)}|^2 \mathcal{E}^2(A_j^{\otimes N}).$$

• Let us assume that all of these measurements have a variance Δ^2 .

Simple example: XY PI tomography III

• Numerical example for N = 6.

Random directions ϕ_i

Uncertainty of $A(\phi)^{\otimes N}$

Uniform directions

Simple example: XY PI tomography IV

• Numerical example for N = 6. This random choice is even worse ...

Random directions ϕ_i

Uncertainty of $A(\phi)^{\otimes N}$

Uniform directions

4-qubit Dicke state, optimized settings (exp.)

The measured correlations

 $\vec{a_i}$ measurement directions

Random settings (exp.)

The measured correlations

 $\vec{a_i}$ measurement directions

Density matrices (exp.)

PI tomography for larger systems

• We determined the optimal A_j for p.i. tomography for N = 4, 6, ..., 14. The maximal squared uncertainty of the Bloch vector elements is

$$\epsilon_{\max}^2 = \max_{k,l,m,n} \mathcal{E}^2[(X^{\otimes k} \otimes Y^{\otimes l} \otimes Z^{\otimes m} \otimes \mathbb{1}^{\otimes n})_{\mathrm{Pl}}]$$

(Total count is the same as in the experiment: 2050.)

Expectation values directly from measured data

 Operator expectation values can be recovered directly from the measurement data as

$$\langle Op \rangle = \sum_{j=1}^{\mathcal{D}_N} \sum_{n=1}^N c_{j,n}^{Op} \langle (A_j^{\otimes (N-n)} \otimes \mathbb{1}^{\otimes n})_{\mathrm{PI}} \rangle,$$

where the c_{in}^{Op} are constants.

• $Op = |D_N^{(N/2)}\rangle\langle D_N^{(N/2)}|$, blue: $\varrho_0 \propto \mathbb{1}$, red: upper bound for any ϱ_0 .

Comparison with other methods for efficient tomography

 If a state is detected as entangled, it is surely entangled. No assumption is used concerning the form of the quantum state.

• Expectation values of all permutationally invariant operators are the same for ρ and ρ_{PI} .

• Typically, it can be used in experiments in which permutationally invariant states are created.

Participants in the project

Witlef Wieczorek MPQ, Munich (now in Vienna)

Christian Schwemmer MPQ, Munich

Géza Tóth Bilbao

Summary

- We discussed permutationally invariant tomography for large multi-qubits systems.
- It paves the way for quantum experiments with more than 6 8 qubits.

See:

G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and
 H. Weinfurter, Permutationally invariant quantum tomography,
 Phys. Rev. Lett. 105, 250403 (2010).

THANK YOU FOR YOUR ATTENTION!

European Research Council

How many settings we need?

- Expectation values of $(X^{\otimes k} \otimes Y^{\otimes l} \otimes Z^{\otimes m} \otimes \mathbb{1}^{\otimes n})_{\text{PI}}$ are needed.
- For a given *n*, the dimension of this subspace is D_(N-n) (simple counting).
- Operators with different *n* are orthogonal to each other.
- Every measurement setting gives a single real degree of freedom for each subspace
- Hence the number of settings cannot be smaller than the largest dimension, which is \mathcal{D}_N .