Spin-squeezing inequalities for entanglement detection in cold gases

G. Tóth^{1,2,3}

¹Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain ²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ³Wigner Research Centre for Physics, Budapest, Hungary

Institute of Theoretical Physics, University of Ulm, 13 November 2013

Motivation Why spin squeezing inequalities are important? Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Criterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-*i* atoms Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators

Why spin squeezing inequalities for $j > \frac{1}{2}$ is important?

- Many experiments are aiming to create entangled states with many atoms.
- Only collective quantities can be measured.
- Most experiments use atoms with $j > \frac{1}{2}$.

Articles reviewed in this talk

 Simple entanglement conditions for singlets GT PRA 2004 GT, M.W. Mitchell NJP 2010 (Singlets in cold gases)

- Complete set of inequalities for spin-¹/₂ particles
 GT, C. Knapp, O. Gühne, H.J. Briegel PRL 2007
 GT, C. Knapp, O. Gühne, H.J. Briegel PRA 2009
 GT JOSAB B 2007
- Complete set of inequalities for spin-*j* particles
 G. Vitagliano, P. Hyllus, I.L. Egusquiza, GT
 PRL 2011
 G. Vitagliano, I. Apellaniz, I.L. Egusquiza, GT
 arxiv 2013

• Why spin squeezing inequalities are important? Physical systems and entanglement Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Oriterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-*i* atoms Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators

Physical systems

State-of-the-art in experiments

- 100,000 atoms realizing an array of 1D Ising spin chains (Nature, 2003)
- Spin squeezing with 10⁶ 10¹² atoms (Nature, 2001)

Main challenge

- The particles cannot be addressed individually.
- Only collective quantities can be measured.
- New type of entangled states and entanglement criteria are needed.

Physical systems II

For example: Spin squeezing in a cold atomic ensemble

Picture from M.W. Mitchell, ICFO, Barcelona.

• Why spin squeezing inequalities are important? Physical systems and entanglement Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Oriterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-*i* atoms Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators

Definition

A multiparticle state is (fully) separable if it can be written as

$$\sum_{k} p_{k} \varrho_{1}^{(k)} \otimes \varrho_{2}^{(k)} \otimes \ldots \otimes \varrho_{N}^{(k)}.$$

If a state is not fully separable, then it is called entangled.

- Motivation
 - Why spin squeezing inequalities are important?
- 2 Physical systems and entanglement
 - Cold gases
 - Entanglement

Spin squeezing entanglement criteria for j = 1/2

- Collective measurements
- The original criterion
- A simple generalized criterion
 - Criterion with three variances
- **5** Generalized spin squeezing conditions for $j = \frac{1}{2}$
 - A full set of generalized criteria for $j = \frac{1}{2}$
- Spin squeezing inequality for an ensemble of spin-*j* atoms
 - Conditions with the angular momentum coordinates for $j > \frac{1}{2}$
 - The usual spin squeezing inequality for $j > \frac{1}{2}$
 - Conditions with the SU(d) generators
 - Detection of SU(d) singlets

Many-particle systems for j=1/2

 For spin-¹/₂ particles, we can measure the collective angular momentum operators:

$$J_l := \frac{1}{2} \sum_{k=1}^N \sigma_l^{(k)},$$

where I = x, y, z and $\sigma_{I}^{(k)}$ a Pauli spin matrices.

We can also measure the variances

$$(\Delta J_l)^2 := \langle J_l^2 \rangle - \langle J_l \rangle^2.$$

- Motivation
 - Why spin squeezing inequalities are important?
- Physical systems and entanglement
 - Cold gases
 - Entanglement

Spin squeezing entanglement criteria for j = 1/2

- Collective measurements
- The original criterion
- A simple generalized criterion
 - Criterion with three variances
- **5** Generalized spin squeezing conditions for $j = \frac{1}{2}$
 - A full set of generalized criteria for $j = \frac{1}{2}$
- Spin squeezing inequality for an ensemble of spin-*j* atoms
 - Conditions with the angular momentum coordinates for $j > \frac{1}{2}$
 - The usual spin squeezing inequality for $j > \frac{1}{2}$
 - Conditions with the SU(d) generators
 - Detection of SU(d) singlets

The standard spin-squeezing criterion

• The spin squeezing criteria for entanglement detection is

$$\frac{(\Delta J_{\chi})^2}{\langle J_{\chi} \rangle^2 + \langle J_{Z} \rangle^2} \geq \frac{1}{N}.$$

• If it is violated then the state is entangled.

[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

• States violating it are like this:

• Why spin squeezing inequalities are important? Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Criterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-*j* atoms Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators

The inequality with three variances

• For separable states we have

$$(\Delta J_X)^2 + (\Delta J_Y)^2 + (\Delta J_Z)^2 \ge Nj.$$

Any state that violates the above criterion is entangled. [GT, Phys. Rev. A 69, 052327 (2004).]

- The left-hand side is zero for the multi-particle singlet.
- Experimental tests:
 - Photons: T.Sh. Iskhakov, I.N. Agafonov, M.V. Chekhova, G. Leuchs, PhysRevLett. 109 150502 (2012).
 - Fermions: J. Meineke, J.-P. Brantut, D. Stadler, T. Müller, H. Moritz, T. Esslinger, Nature Phys. 8, 455 (2012).

The inequality with three variances II

• Cold gas experiment proposal. [GT, M.W. Mitchell, New J. Phys. 12, 053007 (2010).]

 Experiments have been carried out by the Mitchell group at ICFO, Barcelona.

The inequality with three variances III

- The collective variances can be expressed with susceptibilities. We need
 - Thermal equilibrium,
 - Hamiltonians respecting certain symmetries.

[M. Wieśniak, V. Vedral, and Č. Brukner, New J. Phys. 7 258 (2005).]

- It is possible to obtain temperature limits for entanglement for real systems. For example, see
 - I. Bose and A. Tribedi, Phys. Rev. A 72, 022314 (2005),
 - T. Vértesi and E. Bene, Phys. Rev. B 73, 134404 (2006).

• In the isotropic case, appears also in the structure factor based entanglement conditions.

[O. Marty, M. Epping, H. Kampermann, D. Bruss, M.B. Plenio, and M. Cramer, arXiv:1310.0929.]

 Important property: it can detect bound entangled states that have a positive partial transpose.

[GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007); GT, C. Knapp, O. Gühne, and H.J. Briegel, Phys. Rev. A 79, 042334 (2009).]

The inequality with three variances V

- What does the amount of violation mean?
- It can be used to get a lower bound on the number of spins unentangled with the rest.
- For states of the form

$$\otimes_{n=1}^{M} |\Psi_n\rangle \otimes |\Psi_{N-M}\rangle$$

we have

$$(\Delta J_x)^2 + (\Delta J_y)^2 + (\Delta J_z)^2 \ge Mj.$$

For states that are the mixtures of pure states with at least M unentangled spins we have the same constraint.
 [GT, M.W. Mitchell, New J. Phys. 12, 053007 (2010)]

• Why spin squeezing inequalities are important? Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Criterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $i = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-*i* atoms Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators

Generalized spin squeezing criteria for $j = \frac{1}{2}$

Let us assume that for a system we know only

$$ec{J} := (\langle J_X \rangle, \langle J_Y \rangle, \langle J_Z \rangle), \ ec{K} := (\langle J_X^2 \rangle, \langle J_Y^2 \rangle, \langle J_Z^2 \rangle).$$

Then any state violating the following inequalities is entangled.

$$\begin{split} \langle J_x^2 \rangle + \langle J_y^2 \rangle + \langle J_z^2 \rangle &\leq \frac{N(N+2)}{4}, \\ (\Delta J_x)^2 + (\Delta J_y)^2 + (\Delta J_z)^2 &\geq \frac{N}{2}, \\ \langle J_k^2 \rangle + \langle J_l^2 \rangle &\leq (N-1)(\Delta J_m)^2 + \frac{N}{2}, \\ (N-1)\left[(\Delta J_k)^2 + (\Delta J_l)^2 \right] &\geq \langle J_m^2 \rangle + \frac{N(N-2)}{4}, \end{split}$$

where *k*, *l*, *m* take all the possible permutations of *x*, *y*, *z*. [GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007)]

Generalized spin squeezing criteria for $j = \frac{1}{2}$

- The previous inequalities, for fixed ⟨J_{x/y/z}⟩, describe a polytope in the ⟨J²_{x/y/z}⟩ space.
- For $\langle \vec{J} \rangle = 0$ and N = 6 the polytope is the following:

Completeness

• Random separable states:

• The completeness can be proved for large *N*.

Completeness II

The polytope for N = 10 and J = (0, 0, 0),

$$J = (0, 0, 2.5),$$

and J = (0, 0, 4.5).

- Experimental tests: on-going experiments in the group of Carsten Klempt (Hannover) to detect Dicke states in cold gases.
- Other uses: one can obtain analytically

$$\min_{\Psi \text{ separable}} \sum_{\alpha = x, y, z} m_{\alpha} (\Delta J_{\alpha})^2$$
(2)

appearing in structure factor based entanglement detection.

[O. Marty, M. Epping, H. Kampermann, D. Bruss, M.B. Plenio, and M. Cramer, arXiv:1310.0929.]

• Why spin squeezing inequalities are important? Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Criterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-/ atoms • Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators

"Modified" quantities for $j > \frac{1}{2}$

- For the $j = \frac{1}{2}$ case, the SSIs were developed based on the first and second moments and variances of the such collective operators.
- For the $j > \frac{1}{2}$ case, we define the modified second moment

$$\langle \tilde{J}_k^2 \rangle := \langle J_k^2 \rangle - \langle \sum_n (j_k^{(n)})^2 \rangle = \sum_{m \neq n} \langle j_k^{(n)} j_k^{(m)} \rangle$$

and the modified variance

$$(\tilde{\Delta}J_k)^2 := (\Delta J_k)^2 - \langle \sum_n (j_k^{(n)})^2 \rangle.$$

• These are essential to get tight equations for $j > \frac{1}{2}$.

The inequalities for $j > \frac{1}{2}$ with the angular momentum coordinates

 For fully separable states of spin-*j* particles, all the following inequalities are fulfilled

$$\begin{split} \langle J_x^2 \rangle + \langle J_y^2 \rangle + \langle J_z^2 \rangle &\leq Nj(Nj+1), \\ (\Delta J_x)^2 + (\Delta J_y)^2 + (\Delta J_z)^2 &\geq Nj, \\ \langle \tilde{J}_k^2 \rangle + \langle \tilde{J}_l^2 \rangle - N(N-1)j^2 &\leq (N-1)(\tilde{\Delta}J_m)^2, \\ (N-1)\left[(\tilde{\Delta}J_k)^2 + (\tilde{\Delta}J_l)^2 \right] &\geq \langle \tilde{J}_m^2 \rangle - N(N-1)j^2 \end{split}$$

where k, l, m take all possible permutations of x, y, z.

Violation of any of the inequalities implies entanglement.

- In the large *N* limit, the inequalities with the angular momentum are complete.
- It is not possible to find new entanglement conditions based on $\langle J_k \rangle$ and $\langle \tilde{J}_k^2 \rangle$ that detect more states.

• Why spin squeezing inequalities are important? Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Oriterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-/ atoms • Conditions with the angular momentum coordinates for $i > \frac{1}{2}$ • The usual spin squeezing inequality for $i > \frac{1}{2}$ Conditions with the SU(d) generators

• The standard spin-squeezing inequality becomes

$$\frac{(\Delta J_x)^2}{\langle J_y \rangle^2 + \langle J_z \rangle^2} + \frac{\sum_n (j^2 - \langle (j_x^{(n)})^2 \rangle)}{\langle J_y \rangle^2 + \langle J_z \rangle^2} \geq \frac{1}{N}.$$

Violated only if there is entanglement between the spin-*j* particles.

• The second term on the LHS is nonnegative.

• Why spin squeezing inequalities are important? Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Criterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-/ atoms Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators

The inequalities for $j > \frac{1}{2}$ with the G_k 's

• Collective operators:

$$G_l := \sum_{k=1}^N g_l^{(k)},$$

where $I = 1, 2, ..., d^2 - 1$ and $g_I^{(k)}$ are the SU(d) generators.

• We can also measure the

$$(\Delta G_l)^2 := \langle G_l^2 \rangle - \langle G_l \rangle^2$$

variances.

• The SSIs for *G_k* have the general form

$$(N-1)\sum_{k\in I} (\tilde{\Delta}G_k)^2 - \sum_{k\notin I} \langle (\tilde{G}_k)^2 \rangle \geq -2N(N-1)\frac{(d-1)}{d}.$$

- For instance, for the *d* = 3 case, the SU(d) generators can be the eight Gell-Mann matrices.
- I is a subset of indices between 1 and *M*. We have 2^{*M*} equations!

• Why spin squeezing inequalities are important? Cold gases Entanglement Collective measurements The original criterion A simple generalized criterion Criterion with three variances Generalized spin squeezing conditions for $j = \frac{1}{2}$ • A full set of generalized criteria for $j = \frac{1}{2}$ Spin squeezing inequality for an ensemble of spin-/ atoms Conditions with the angular momentum coordinates for $j > \frac{1}{2}$ Conditions with the SU(d) generators Detection of SU(d) singlets ٥

An example: The criterion for SU(d) singlets

A condition for two-producibility (i.e., a higher form of entanglement) for N qudits of dimension d is

$$\sum_{k} (\Delta G_k)^2 \geq 2N(d-2).$$

A condition for separability is

$$\sum_{k} (\Delta G_k)^2 \geq 2N(d-1).$$

[G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth, Spin squeezing inequalities for arbitrary spin, PRL 2011.]

Group

Philipp Hyllus	Research Fellow (2011-2012)
Zoltán Zimborás	Research Fellow (2012-)
Iñigo Urizar-Lanz	Ph.D. Student
Giuseppe Vitagliano	Ph.D. Student
lagoba Apellaniz	Ph.D. Student

Topics

- Multipartite entanglement and its detection
- Metrology, cold gases
- Collaborating on experiments:
 - Weinfurter group, Munich, (photons)
 - Mitchell group, Barcelona, (cold gases)
- Funding:
 - European Research Council starting grant 2011-2016, 1.3 million euros.
 - CHIST-ERA QUASAR collaborative EU project.
 - Grants of the Spanish Government and the Basque Government

Summary

- Full set of generalized spin squeezing inequalities with J_i with l = x, y, z for $j > \frac{1}{2}$.
- Large set of inequalities with the other collective operators.
- These might make possible new experiments and make existing experiments simpler.

See: G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. Tóth, Phys. Rev. Lett. 107, 240502 (2011) + arxiv:1310.2269.

See www.gtoth.eu for the slides THANK YOU FOR YOUR ATTENTION!

