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Motivation
In many-qubit systems state tomography is not feasible
since the number of measurements needed increases 
exponentially with the size of the system.

We can still expect to do the following things
• Decide whether the state is entangled
• Measure the fidelity with respect to a given state
• Decide whether the state is genuine multi-qubit 
entangled

Problem: with usual methods even for these tasks the 
number of measurements increases exponentially with the 
system size, if only local masurements are allowed.
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Stabilizer theory
Definition: A quantum state       is stabilized by an operator 
S if 

Ψ

.S Ψ = Ψ

In other words, S is the stabilizing operator of       .

Stabilizer theory is used in quantum error correction and fault 
tolerant quantum computation. 

The key idea is that an N-qubit quantum state can uniquely 
be defined by N stabilizing operators. For certain quantum 
states these operators are very simple ...

Ψ

D. Gottesmann, PRA. 54, 1862 (1996).



( ) (1) (2) ( )
1 ,NGHZ NS X X X= ⋅⋅⋅

( ) (1) (2)
2 ,NGHZS Z Z=

( ) ( 1) ( ) .NGHZ N N
NS Z Z−=

Generalized N-qubit GHZ state:

...
( ) (2) (3)
3 ,NGHZS Z Z=

Stabilizing operators of a GHZ state:

( )1 000...00 111...11
2NGHZ = +

Not only these operators, but also their products stabilize the 
GHZ state. These form a group called stabilizer. Sk‘s are the 
generators of the stabilizer.

GHZ states



GHZ states – The stabilizer group
Three-qubit example: the stabilizer group has 8 elements

(1) (2) (3)X X X
(1) (2)Z Z
(2) (3)Z Z

(1) (2) (3)−Y Y X
(1) (2) (3)−X Y Y

(1) (2) (3)−Y X Y

(1) (3)Z Z

1

Generators:
Obtained from products
of the generators:



Stabilizing operators of an N-qubit cluster state

( ) ( 1) ( ) ( 1) ,NC k k k
kS Z X Z− +=

where k=1,2,...,N and
(0) ( 1) 1.NZ Z += =

Cluster states appear in
• error correction, fault tolerant quantum computing, and
• measurement based quantum computing.
• Naturally arise in spin chains.

NC

Cluster states

R. Raussendorf and H.J. Briegel, PRL 86, 5188 (2001).
See also recent experiments with a four-qubit cluster state with photons in Vienna
and at MPQ, Garching. 
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Entanglement criterion I
Let us construct an entanglement criterion with the stabilizing 
operators of the GHZ state.
Criterion 1: For fully separable states 

where                        
Proof. For product states, using the Cauchy-Schwarz ineq. 

2 .≤ ≤l N

( ) ( ) (1) (2) ( ) ( 1) ( )
1

(1) (2) ( ) ( 1) ( )

( 1) ( ) ( 1) ( ) 1.

−

−

− −

+ = ⋅⋅⋅ + =

⋅⋅⋅ + ≤

+ ≤

N NGHZ GHZ N l l
l

N l l

l l l l

S S X X X Z Z

X X X Z Z

X X Z Z

It is easy to see that this is also true for mixed separable 
states.

( ) ( )
1 1,+ ≤N NGHZ GHZ

lS S



( ) ( )
1 1,+ ≤N NGHZ GHZ

lS S

Let us look at the previous condition: 

The left hand side is maximal for the GHZ state, i.e.,
this criterion detects states close the GHZ state.

Robustness to noise: Let us consider a noisy GHZ state of 
the form.

2,3,..., .=l N

Entanglement criterion II

noise noise noise
1( ) (1 ) .

2
= + − N NNp p p GHZ GHZρ

How much noise is allowed by our method before it stops 
detecting the state as entangled? Answer:

noise
1 .
2

<p



Entanglement criterion III
Generalization. Choosing any two locally non-commuting 
stabilizing operators we can construct a necessary condition 
for separability

( ) ( ) 1.+ ≤N NGHZ GHZ
k lS S

If it is violated then the system is entangled.
Three-qubit examples:

(1) (2) (3) (1) (2) 1,+ ≤X X X Z Z

(1) (2) (3) (1) (2) 1,− + ≤Y Y X Z Z

(1) (2) (3) (1) (2) (3) 1,− ≤X X X Y Y X



Comparison with Bell inequalities
For separable 
quantum states:

For states with a local hidden
variable model (Mermin 1990) :

(1) (2) (3)

(1) (2) (3) 1.

−

≤

X X X

Y Y X

(1) (2) (3) (1) (2) (3)

(1) (2) (3) (1) (2) (3) 2.

− −

− ≤

X X X Y Y X

X Y Y Y X Y

For the GHZ state we have a
Greenberger-Horne-Zeilinger-type 
violation of local realism:

(1) (2) (3) 1,= −Y X Y (1) (2) (3) 1,= +X X X
(1) (2) (3) 1.= −X Y Y (1) (2) (3) 1.= −Y Y X

There is not a
separable quantum 
state for which

(1) (2) (3) 1,= +X X X
(1) (2) (3) 1,= −Y Y X



Criteria for cluster states
Let us construct an entanglement criterion with the stabilizing 
operators of cluster states.
Criterion 2: For fully separable states 

( ) ( )
1 1.++ ≤N NC C

k kS S

Proof. For product states, using the Cauchy-Schwarz ineq. 
( ) ( ) ( ) ( 1) ( 2) ( 1) ( 2) ( 3)

1

( ) ( 1) ( 2) ( 1) ( 2) ( 3)

( 1) ( 2) ( 1) ( 2) 1.

+ + + + +
+

+ + + + +

+ + + +

+ = + =

+ ≤

+ ≤

N NGHZ GHZ k k k k k k
k k

k k k k k k

k k k k

S S Z X Z Z X Z

Z X Z Z X Z

X X Z X

It is easy to see that this is also true for mixed separable 
states.
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How to measure the fidelity with respect to a GHZ state, i.e., 
how to measure the operator 

?N NGHZ GHZ

In a typical experiment only local measurements are 
possible, thus it has to be decomposed into the sum of 
locally measurable terms. For three qubits we have:

( )( )( ) ( )( )( )

(1) (2) (2) (3) (1) (3) (1) (2) (3)
3 3

(1) (1) (2) (2) (3) (3) (1) (1) (2) (2) (3) (3)

1 (1 2 )
8

1 1
16 16

= + + + −

+ + + + + − − −

GHZ GHZ Z Z Z Z Z Z X X X

X Y X Y X Y X Y X Y X Y

Problem: the number of local terms increases exponentially 
with the number of qubits.

Measuring the fidelity

O. Gühne and P. Hyllus, quant-ph.



Measurement settings

{ }(1) (2) (3) ( ), , ,..., NO O O O

Measuring a local setting

means measuring O(k) at qubits k=1,2,3,...,N several times. 
After the measurement outcomes are collected, all two, 
three-qubit, etc., correlations of the form

( ) ( ) ( ) ( ) ( ), ,...k l k l mO O O O O

can be obtained. 

Thus from the point of view of the measurement effort the 
number of local settings matters and not the number of 
correlations terms.



Lower bound on fidelity
Now we look for an operator which gives a lower bound on 
the fidelity but needs fewer measurements. 
1. That is, we require that we have always a lower bound

2. We look for this operator in the form (this is our ansatz)

where ck are constant.

( ) ,=∑ NGHZ
k k

k
P c S

.≤ N NP GHZ GHZ

3. We also require that P can be measured with the minimal 
two local measurement settings. 

4. Under the above constraints, we want our lower bound to 
the highest possible for GHZ states + white noise.



Lower bounds on the fidelity

( )( )
( ) 1

1

11 1.
2 2>

++
= + −∏

NN
N

GHZGHZ
GHZ k

k

SSP

Results of the optimization:

1. Lower bound on the fidelity with respect to the GHZ state 
can be obtained from

2. Similar results for the cluster state
( ) ( )

( ) 1 1 1.
2 2

+ +
= + −∏ ∏

N N
N

C C
C k k

k even k odd

S SP

2. x x x x x x x ... 

1. z z z z z z z ... 

2. z x z x z x z ... 

1. x z x z x z x ... 

G. Tóth and O. Gühne, quant-ph/0501020.G. Tóth and O. Gühne, PRL 94, 060501 (2005).



How good is our fidelity estimate?

Fidelity

Estimate

noise noise noise 4 44

1( ) (1 ) .
2

= + −p p p GHZ GHZρ

noisep

Let us compare the fidelity and our estimate for noisy GHZ 
states
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Genuine multi-qubit entanglement
Genuine three-qubit entanglement

Biseparable entanglement

000 111+

( )001 111 00 11 1+ = +

A mixed entangled state is biseparable if it is the mixture of 
biseparabe states (of possibly different partitions).



Genuine multi-qubit entanglement

SSeparable states

Genuine multi-qubit entangled states

Biseparable entangled states

Sufficient criterion 
for biseparability

States detected 

by the criterion



Usual entanglement conditions

1 ,
2

≤N NGHZ GHZ

For states without N-qubit entanglement we have

If one of these is violated then the state is N-qubit 
entangled.

Problem: too many local measurements are needed 
for the projector.

1 .
2

≤N NC C G. Tóth and O. Gühne, PRL 94, 060501 (2005).

Sacket et. al., Nature 404, 256 (2000).



Our entanglement criteria

( )( )
1

1

11 3
2 2 2

NN GHZGHZ
k

k

SS
>

++
+ ≤∏

( ) ( )1 1 3
2 2 2

N NC C
k k

k even k odd

S S+ +
+ ≤∏ ∏

1. Criterion for detecting genuine N-qubit entanglement close 
to GHZ states

2. Criterion for detecting genuine N-qubit entanglement close 
to cluster states

They need only two measurement settings.
G. Tóth and O. Gühne, PRL. 94, 060501 (2005).



Robustness to noise

noise noise noise
1( ) (1 ) .

2
= + − N NNp p p GHZ GHZρ

Let us see again the noisy GHZ state

1. Our criterion detects it as N-qubit entangled if

noise
1 .
3

≤p

2. Our other criterion for the cluster state detects the 
noisy cluster state as entangled if

noise
1 .
4

≤p



We have discussed how to

● detect entanglement,
● estimate the fidelity with respect to a highly 

entangled state, and
● detect genuine multi-qubit entanglement

using the stabilizer theory in systems of many qubits.

For further information please see

G. Tóth and O. Gühne, PRL 94, 060501 (2005).

G. Tóth and O. Gühne, quant-ph/0501020.

Conclusions


