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Introduction
◮ With the rapid development of quantum control it

is now possible to create large scale entanglement
in many physical systems, such as cold atoms or
trapped ions.

◮ Entanglement conditions with collective measure-
ments are important since in many quantum con-
trol experiments the spins cannot be individually
addressed.

◮ We derive the complete set of such entanglement
criteria for a system of spin-1

2 particles [1]. These
criteria detect all entangled states that can be de-
tected based on the first and second moments of
collective angular momenta.

◮ When applied to several spin models, our results
show the presence of bound entanglement in the
thermal state.

◮ In particular, our criteria detect bound entangle-
ment that has a positive partial transpose with re-
spect to all bipartitions.

Motivation
◮ Recently, several generalized spin squeezing cri-

teria for the detection of entanglement were de-
rived and used even experimentally (e.g., [2-5]).
These criteria detect entanglement close to various
important quantum states (e.g., many-body singlet
states, Dicke states, etc.) and were obtained using
very different approaches.

◮ At this point two main questions arise:

• Is there a systematic way of finding all such
inequalities? Clearly, finding such optimal en-
tanglement conditions is a hard task since
one can expect that they contain complicated
nonlinearities.

• How strong are spin squeezing criteria? Can
they detect multipartite entangled states not
detectable by the PPT criterion or other bi-
partite entanglement criteria?

Spin squeezing criterion
◮ We call a quantum state fully separable states if it

can be written as

ρ = ∑
l

plρ
(1)
l ⊗ρ(2)

l ⊗ ...⊗ρ(N)
l , (1)

where ∑l pl = 1 and pl > 0. Otherwise, we call the
state entangled.

◮ The spin squeezing criterion [2] for entanglement
detection is

(∆Jx)
2

〈Jy〉2 + 〈Jz〉2 ≥
1
N

, (2)

where Jl := 1
2 ∑N

k=1 σ(k)
l for l = x,y,z are the collec-

tive angular momentum components and σ(k)
l are

Pauli matrices. If this inequality is violated then the
state is entangled.

◮ In practice this means that the angular momentum
of the state has a small variance in one direction,
while in an orthogonal direction the angular mo-
mentum is large.

Optimal spin squeezing
◮ For separable states the following inequalities hold:

〈J2
x 〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤ N(N + 2)/4,

(∆Jx)
2 +(∆Jy)

2 +(∆Jz)
2 ≥ N/2,

〈J2
k 〉+ 〈J2

l 〉−N/2 ≤ (N −1)(∆Jm)2,

(N −1)
[

(∆Jk)
2 +(∆Jl)

2] ≥ 〈J2
m〉+ N(N−2)/4,

where k, l,m take all permutations of x,y,z.

◮ For fixed 〈Jk〉 these describe a polytope in the
space of the

〈

J2
k

〉

. The figure shows this polytope
for N = 6 :
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The polytope
◮ The coordinates of the extreme points are

Ax

[

N2

4
−κ(〈Jy〉

2 + 〈Jz〉
2),

N
4

+ κ〈Jy〉
2,

N
4

+ κ〈Jz〉
2
]

,

Bx

[

〈Jx〉
2 +

〈Jy〉
2 + 〈Jz〉

2

N
,
N
4

+ κ〈Jy〉
2,

N
4

+ κ〈Jz〉
2
]

,

where κ := (N−1)/N. Points Ay/z and By/z can be
obtained from these by permuting the coordinates.

◮ For 〈Jk〉 = 0 and even N, states corresponding to
Ax and Bx are

|ρAx〉 =
1
2

[

(|+ 1x〉〈+1x|)
⊗N +(|−1x〉〈−1x|)

⊗N]

(4)
and

|ρBx〉 = (|+ 1x〉〈+1x|)
⊗N/2 ⊗ (|−1x〉〈−1x|)

⊗N/2.
(5)

◮ For 〈Jk〉 6= 0 constructing such states is more com-
plicated and is explained in Ref. [1].

Small spin clusters
◮ Let us consider four spin-1/2 particles, interacting

via the Hamiltonian

H = (h12 + h23 + h34 + h41)+ J2(h13 + h24), (6)

where hi j = σ(i)
x ⊗σ( j)

x + σ(i)
y ⊗σ( j)

y + σ(i)
z ⊗σ( j)

z is
a Heisenberg interaction between the qubits i, j.

◮ Such a Hamiltonian is used to describe cuprate and
polyoxovanadate clusters [6,7].

◮ For the above Hamiltonian we compute the ther-
mal state ρ(T,J2) ∝ exp(−H/kT) and investigate
its separability properties.

◮ For several separability criteria (i.e., partial trans-
pose criterion, criteria based on symmetric exten-
sions, computable cross norm criterion, and other
permutation criteria) we calculate the maximal tem-
perature, below which the criteria detect the ther-
mal state as entangled.

Small spin clusters II
◮ Bound temperatures for entanglement
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◮ For J2 & −0.5, the spin squeezing inequality is the
strongest criterion for separability. It allows to de-
tect entanglement even if the state has a positive
partial transpose (PPT) with respect to all biparti-
tions.

◮ Note that multipartite bound entanglement that is
PPT with respect to all partitions is very challenging
to detect.

Spin chains
◮ We found bound entanglement that is PPT with

respect to all bipartitions in XY and Heisenberg
chains, and also in XY and Heisenberg models on
a completely connected graph, up to 9 qubits.

◮ The dependence of the critical temperatures for the
PPT and the optimal spin squeezing criteria as a
function of the number of spins in the Heisenberg
chain is the following
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◮ Thus for these models, which appear in nature,
there is a considerable temperature range in which
the system is already PPT but not yet separable.
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