

Entanglement Detection in Continous Variable Systems

GÉZA TÓTH¹, CHRISTOPH SIMON² AND JUAN IGNACIO CIRAC¹

¹Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, Garching, D-85748, Germany ²Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

Introduction

- In an experiment the density matrix is usually not known, only partial information is available on the quantum state. One can typically measure a few observables and still would like to detect some of the entangled states. Finding a criterion for entanglement with easily measurable observables is crucial for entanglement detection.
- There are only few such criteria in the literature. One of them is described in Ref. [1] for detecting entanglement in a two-mode system. One just has to measure the second moments of *x* and *p* for both systems. For example, if the inequality

$$(\Delta(x_A + x_B))^2 + (\Delta(p_A - p_B))^2 < 2 \qquad (1)$$

is fulfilled, then the state is entangled [1].

This criterion is equivalent to an entanglement witness if local unitary operations are allowed. A generalization of Ineq. (1) is a sufficent and necessary condition for entanglement of two-mode Gaussian states [1,2].

Outline of proof

The criterion is deduced from a simpler necessary condition for separability

 $w(\Delta_{\rho}N)^2 + (1-w)(\Delta_{\rho}(a-b))^2 \ge f_w(\langle N \rangle_{\rho}), \quad (4)$

where 0 < w < 1 and $f_w(N)$ is a monotonic function of *N*. All states violating this inequality are entangled.

Ineq. (4) is based on a single-mode uncertainty relation

$$w(\Delta_{\rho}N_A)^2 + (1-w)(\Delta_{\rho}a)^2 \ge L_w(\langle N_A \rangle_{\rho}) ,$$

where $N_A = a^{\dagger}a$ and

$$L_w(N) = \sqrt{w(1-w)(N+\frac{1}{4}) + \frac{w}{4}} - \frac{1}{2}.$$

The function $f_w(N)$ for Ineq. (4) can be obtained as $f_w(N) = L_w(N) + L(0)$.

• Our main result (3) is obtained by finding the region detected as entangled by (4) with any $w \in [0, 1]$.

Realization with photons

The state (2) can be prepared using a 50/50 beam splitter and a laser pulse corresponding to the $|\Psi\rangle \otimes |0\rangle$ state. After the second beam splitter ide-

The detected state

► If one has N photons and sends them through a beam splitter or if one has N atoms in some internal state and applies a laser pulse, the state will be

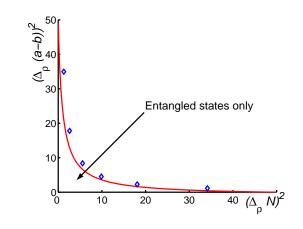
$$|\Psi\rangle = \frac{1}{\sqrt{2^N N!}} (a^{\dagger} + b^{\dagger})^N |0,0\rangle \tag{2}$$

Here *a* and *b* are annihilation operators which are defined according to $x_A = (a + a^{\dagger})/\sqrt{2}$. This state is not detected by the previous criterion as it will be demostrated later.

- We will present a criterion which: (i) requires measuring quantities which are easily accessible experimentally and; (ii) detects entangled states close to state (2).
- The criterion is quartic in operator expectation values and it cannot be reduced to an entanglement witness, even with the application of local unitary operations.

The
$$(\Delta N)^2 - (\Delta(a-b))^2$$
 plane

- ► Our method detects entangled states in the proximity of (2) on the $(\Delta_{\rho}N)^2 - (\Delta_{\rho}(a-b))^2$ plane.
- Numerical verification of the inequality (3) for the two-mode separability problem. (red) Boundary of the region defined by Ineq. (3) for N = 200. All states below this line are entangled. The (0,0) point corresponds to the state (2). (blue) Points corresponding to separable states found numerically.



Correlation matrix

The entangled state (2) is not detected by the method based on the correlation matrix [1,2]. The correlation matrix γ contains the correlations of two

Entanglement criterion

 Our main result: For all separable states, i.e. states that can be written as

$$\rho = \sum_{k} p_k \rho_k^A \otimes \rho_k^B,$$

the following expression with the variances of the total particle number $N := a^{\dagger}a + b^{\dagger}b$ and (a - b) are bounded from below as

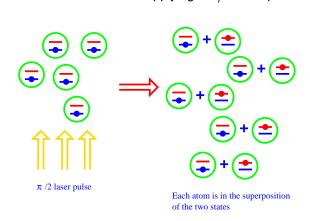
$$\left\{ (\Delta_{\rho}N)^2 + 1 \right\} \left\{ (\Delta_{\rho}(a-b))^2 + 1 \right\} \ge \frac{\langle N \rangle_{\rho}}{4} + \frac{1}{8},$$
(3)

where $(\Delta_{\rho}A)^2 := \langle A^{\dagger}A \rangle_{\rho} - |\langle A \rangle_{\rho}|^2$ (note that A need not be Hermitian).

► Physical motivation [3]: it is not possible to have a fixed particle number — corresponding to $(\Delta_{\rho}N)^2 = 0$ — and perfect interference — corresponding to $(\Delta_{\rho}(a-b))^2 = 0$ — at the same time, unless the system under consideration is in an entangled state. Only highly non-classical states can exhibit particle-like and wave-like features simultaneously.

Realizations with BEC

The state (2) can be obtained in a Bose-Einstein condensate, by preparing the atoms in the same internal state and then applying a π/2 laser pulse.

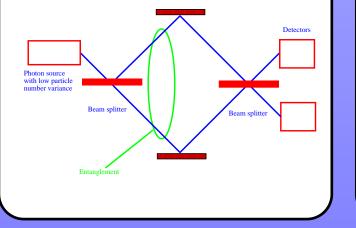


The entanglement between the modes *a* and *b* is physically much more meaningful, if the two modes are spatially separated. This could be be done for example by a state-dependent potential.

Conclusions

 A simple inequality for the expectation values of observables was proposed for entanglement detection.

ally one gets back the $|\Psi\rangle \otimes |0\rangle$ state. The detectors measure the particle numbers in the two modes. In oder to detect entanglement, assuming perfect destructive interference at the second beam splitter, for the photon source $(\Delta N)^2 \leq N/4 - 7/8$ is required. This requirement is satisfied, for example, by a number-squeezed coherent state.



pairs of conjugate single-party observables

$$\gamma_{kl} = Tr\{\rho(R_k - \langle R_k \rangle)(R_l - \langle R_l \rangle)\} + Tr\{\rho(R_l - \langle R_l \rangle)(R_k - \langle R_k \rangle)\}.$$

Here $\{R_k\} = \{x_A, p_A, x_B, p_B\}$, $x_A = (a + a^{\dagger})/\sqrt{2}$, $p_A = (a - a^{\dagger})/(\sqrt{2}i)$, and x_B and p_B are defined similarly for the *b* mode.

► The sufficient condition for inseparability is

$$T_a\gamma T_a - iJ \not\ge 0,$$

where $T_a \gamma T_a$ is the correlation matrix corresponding to the partially transposed density matrix and $J_{kl} = i[R_k, R_l]$.

For the state (2) the $T_a\gamma T_a - iJ$ matrix is positive definite, thus the state is not detected as entangled.

- Since only the measurement of easily accessible quantities (particle numbers and particle number variances) are needed, this approach may be feasible for detecting entanglement experimentally in Bose-Einstein condensates or with photons using linear optics.
- ► Other necessary conditions for separability could be constructed with the variances of two commuting operators. For example, entangled states close to the $|N,0\rangle + |0,N\rangle$ Schrödinger cat state could be detected by measuring the variances of N and $(a^{\dagger}b)^{N} + (ab^{\dagger})^{N}$.

Related bibliography:

- L.-M. Duan, G. Giedke, J.I. Cirac and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).
- 2. R. Simon, Phys. Rev. Lett 84, 2726(2000).

3. C. Simon, Phys. Rev. A 66, 052323 (2002).