Entanglement Witnesses with Simple Local Decomposition

GÉza Tóth ${ }^{1}$, Otfried Gühne ${ }^{2}$ and Juan Ignacio Cirac ${ }^{1}$
${ }^{1}$ Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, Garching, D-85748, Germany ${ }^{2}$ Institut für Theoretische Physik, Universität Hannover, Hannover D-30167, Germany

Introduction

- An operator W is an entanglement witness, if for every product state $\langle W\rangle \geq 0$ and for some entangled states $\langle W\rangle<0$.
- Entanglement witnesses are usually constructed using a projector [1] to a highly entangled state, $|\Psi\rangle$,

$$
\begin{equation*}
W_{P}=c_{P} \cdot \mathbb{1}-|\Psi\rangle\langle\Psi| . \tag{1}
\end{equation*}
$$

We propose a different way of constructing witnesses for N-qubit quantum states

$$
\begin{equation*}
W=c \cdot \mathbb{1}-\sum_{k=1}^{N} S_{k} \tag{2}
\end{equation*}
$$

where S_{k} 's stabilize [2] state $|\Psi\rangle$

$$
\begin{equation*}
S_{k}|\Psi\rangle=|\Psi\rangle \tag{3}
\end{equation*}
$$

The S_{k} 's are products of single-qubit operators. Advantage: it is much easier to measure the witnesses locally. However, the witness is more sensitive to noise than the projector-based witness.

Stabilizer Witnesses

The following witnesses are based on stabilizing operators. The first one detects genuine threeparty entanglement around a GHZ state
$W_{G H Z 3}:=2 \cdot \mathbb{1}-\sigma_{z}^{(1)} \boldsymbol{\sigma}_{z}^{(2)}-\sigma_{z}^{(2)} \boldsymbol{\sigma}_{z}^{(3)}-\sigma_{x}^{(1)} \boldsymbol{\sigma}_{x}^{(2)} \boldsymbol{\sigma}_{x}^{(3)}$
It needs only 3 locally measurable terms and 2 measuring setups. (Compare with $W_{G H Z}^{P}$ given in Eq. (5).)
Witness detecting genuine four-qubit entanglement around a GHZ state
$W_{G H Z 4}:=3 \cdot \mathbb{1}-\sigma_{z}^{(1)} \boldsymbol{\sigma}_{z}^{(2)}-\sigma_{z}^{(2)} \boldsymbol{\sigma}_{z}^{(3)}-\boldsymbol{\sigma}_{z}^{(3)} \boldsymbol{\sigma}_{z}^{(4)}$

$$
\begin{equation*}
-\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)} . \tag{7}
\end{equation*}
$$

Witness detecting four-qubit entanglement around a cluster state [3]

$$
\begin{align*}
W_{c l 4} & :=3 \cdot \mathbb{1}-\sigma_{x}^{(1)} \sigma_{z}^{(2)}-\sigma_{z}^{(1)} \boldsymbol{\sigma}_{x}^{(2)} \boldsymbol{\sigma}_{z}^{(3)} \\
& -\boldsymbol{\sigma}_{z}^{(2)} \boldsymbol{\sigma}_{x}^{(3)} \boldsymbol{\sigma}_{z}^{(4)}-\sigma_{z}^{(3)} \boldsymbol{\sigma}_{x}^{(4)} . \tag{8}
\end{align*}
$$

Sensitivity to Noise

- A three-qubit $G H Z$ state is detected as three-qubit entangled by the witness $W_{G H Z 3}$ after mixing with the totally mixed state

$$
\begin{equation*}
\rho=p \rho_{G H Z 3}+(1-p) \frac{\mathbb{1}}{8} \tag{12}
\end{equation*}
$$

if $p>2 / 3 \approx 0.67 . W_{G H Z 3}$ is somewhat more sensitive to noise than the projector-based witness $W_{G H Z}^{P}$ which detects entanglement if $p>3 / 7 \approx$ 0.43 .

A four-qubit $G H Z$ state is detected as four-qubit entangled by $W_{G H Z 4}$ if $p>3 / 4$

Many-qubit $G H Z$ and cluster states are detected as entangled by $Q_{G H Z N}$ and $Q_{c l N}$, respectively, if $p>1 / 2$.

Projector-based Witnesses

- The following entanglement witness detects genuine three-qubit entanglement based on a projector to a GHZ state, $\left|G H Z_{3}\right\rangle=|000\rangle+|111\rangle$,

$$
\begin{equation*}
W_{G H Z}^{P}:=\frac{1}{2} \mathbb{1}-\left|G H Z_{3}\right\rangle\left\langle G H Z_{3}\right| . \tag{4}
\end{equation*}
$$

Witnesses similar to $W_{G H Z}^{P}$ have already been used for experimental detection of entanglement [1].

Witness $W_{G H Z}^{P}$ detects only genuine three-party entanglement, i.e., it does not detect biseparable pure states or their mixtures. [For example, (12)(3) biseparable pure states have the form $|\Psi\rangle=\left|\Psi_{12}\right\rangle \otimes\left|\Psi_{3}\right\rangle$. Note that qubit (3) is not entangled with the other qubits.]

No Biseparability

The witness $W_{G H Z 3}$ (see Eq. (6)) detects genuine three-party entanglement. Proof. First let us consider (1)(23) biseparable product states. Then

$$
\begin{align*}
& \left\langle\boldsymbol{\sigma}_{z}^{(1)} \boldsymbol{\sigma}_{z}^{(2)}\right\rangle+\left\langle\boldsymbol{\sigma}_{z}^{(2)} \boldsymbol{\sigma}_{z}^{(3)}\right\rangle+\left\langle\boldsymbol{\sigma}_{x}^{(1)} \boldsymbol{\sigma}_{x}^{(2)} \boldsymbol{\sigma}_{x}^{(3)}\right\rangle \\
= & \left\langle\boldsymbol{\sigma}_{z}^{(1)}\right\rangle\left\langle\boldsymbol{\sigma}_{z}^{(2)}\right\rangle+\langle 1\rangle\left\langle\boldsymbol{\sigma}_{z}^{(2)} \boldsymbol{\sigma}_{z}^{(3)}\right\rangle \tag{10}\\
+ & \left\langle\boldsymbol{\sigma}_{x}^{(1)}\right\rangle\left\langle\boldsymbol{\sigma}_{x}^{(2)} \boldsymbol{\sigma}_{x}^{(3)}\right\rangle=\sum_{k=1}^{3} a_{k} b_{k} \leq|\vec{a}||\vec{b}|=2, \tag{9}
\end{align*}
$$

where for the Cauchy-Schwarz inequality

$$
\begin{aligned}
& \vec{a}=\left(\left\langle\sigma_{z}^{(1)}\right\rangle,\langle 1\rangle,\left\langle\sigma_{x}^{(1)}\right\rangle\right), \\
& \vec{b}=\left(\left\langle\sigma_{z}^{2}\right\rangle,\left\langle\sigma_{z}^{(2)} \sigma_{z}^{(3)}\right\rangle,\left\langle\sigma_{x}^{(2)} \sigma_{x}^{(3)}\right\rangle\right),
\end{aligned}
$$

and we used that $|\vec{a}| \leq \sqrt{2}$ and $|\vec{b}| \leq \sqrt{2}$. From Eq. (9) it follows, that for any (1)(23) biseparable product state $\left\langle W_{G H Z 3}\right\rangle \geq 0$. Similar proofs can be constructed for the (2)(13) and (12)(3) partitions.

Local Decomposition

- For an experiment, witness (4) must be decomposed into locally measurable terms [1]. The local decompostion of a projector-based witness is quite complicated. For example,

$$
\begin{align*}
& W_{G H Z}^{P}= \\
& \frac{1}{8}\left[3 \cdot \mathbb{1}-\sigma_{z}^{(1)} \sigma_{z}^{(2)}-\sigma_{z}^{(2)} \sigma_{z}^{(3)}\right. \\
& \sigma_{z}^{(1)} \sigma_{z}^{(3)}-2 \sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \\
& \frac{1}{2}\left(\sigma_{x}^{(1)}+\sigma_{y}^{(1)}\right)\left(\sigma_{x}^{(2)}+\sigma_{y}^{(2)}\right)\left(\sigma_{x}^{(3)}+\sigma_{y}^{(3)}\right) \\
& \left.\frac{1}{2}\left(\sigma_{x}^{(1)}-\sigma_{y}^{(1)}\right)\left(\sigma_{x}^{(2)}-\sigma_{y}^{(2)}\right)\left(\sigma_{x}^{(3)}-\sigma_{y}^{(3)}\right)\right] . \tag{5}
\end{align*}
$$

Decomposition (7) has 6 locally measurable terms. For these, 4 measurement settings are needed. (i.e., the $\boldsymbol{\sigma}_{z}^{(1)} \boldsymbol{\sigma}_{z}^{(2)}$ and $\sigma_{z}^{(2)} \boldsymbol{\sigma}_{z}^{(3)}$ terms can be measured with one setup. One has to measure σ_{z} for each qubit and then compute the correlations.)

Bounds for Separable States

The following entanglement witness detects entanglement (but not necessarily genuine N-qubit entanglement) close to an N -qubit GHZ state
$Q_{G H Z N}:=(N-1)\left(\mathbb{1}-\prod_{k=1}^{N} \sigma_{x}^{(k)}\right)-\sum_{k=1}^{N-1} \sigma_{z}^{(k)} \sigma_{z}^{(k+1)}$.

The following entanglement witness detects entanglement for states close to an N-qubit cluster state [3,4]

$$
\begin{equation*}
Q_{c l N}:=\frac{N}{2} \cdot \mathbb{1}-\sum_{k=1}^{N} \sigma_{z}^{(k-1)} \boldsymbol{\sigma}_{x}^{(k)} \boldsymbol{\sigma}_{z}^{(k+1)} \tag{11}
\end{equation*}
$$

where N is even and $\sigma_{z}^{(0)}=\sigma_{z}^{(N+1)}=1$.

For both stabilizer witnesses the number of terms increases linearly with the number of qubits.

Conclusions

- Based on similar ideas, spin-chain Hamiltonians can also be used as entanglement witnesses. For example, let us consider the Heisenberg-chain Hamiltonian

$$
\begin{equation*}
H_{H}=\sum_{k=1}^{N-1} \boldsymbol{\sigma}_{x}^{(k)} \boldsymbol{\sigma}_{x}^{(k+1)}+\boldsymbol{\sigma}_{y}^{(k)} \boldsymbol{\sigma}_{y}^{(k+1)}+\boldsymbol{\sigma}_{z}^{(k)} \boldsymbol{\sigma}_{z}^{(k+1)} \tag{13}
\end{equation*}
$$

The expectation value for separable states is bounded by $E_{\text {min,sep }}=-N+1$. The proof is based on

$$
\begin{align*}
& \left\langle\sigma_{x}^{(k)}\right\rangle\left\langle\sigma_{x}^{(k+1)}\right\rangle+\left\langle\sigma_{y}^{(k)}\right\rangle\left\langle\sigma_{y}^{(k+1)}\right\rangle \\
+ & \left\langle\sigma_{z}^{(k)}\right\rangle\left\langle\sigma_{z}^{(k+1)}\right\rangle \leq 1 \tag{14}
\end{align*}
$$

If the measured energy is less than $E_{\text {min,sep }}$ then the system is necessarily entangled. (The real ground state energy is around $-3 N / 2$.)

We have presented a method for constructing entanglement witnesses with simple local decomposition based on stabilizing operators. These witnesses can detect genuine multi-party entanglement around GHZ and cluster states. The approach can straightforwardly be generalized for graph states.

Related bibliography

1 O. Gühne and P. Hyllus, quant-ph/0301162; M Bourennane, M. Eibl, C. Kurtsiefer, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, A Sanpera, quant-ph/0309043; A. Acin, D. Bruß, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001).

2 D. Gottesman, Phys. Rev. A 54, 1862 (1996).
3 R. Raussendorf and H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

