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Introduction
I An operator W is an entanglement witness, if for

every product state 〈W 〉 ≥ 0 and for some entan-
gled states 〈W 〉 < 0.

I Entanglement witnesses are usually constructed
using a projector [1] to a highly entangled state,
|Ψ〉,

WP = cP ·
� −|Ψ〉〈Ψ|. (1)

I We propose a different way of constructing wit-
nesses for N-qubit quantum states

W = c · � −
N

∑
k=1

Sk, (2)

where Sk ’s stabilize [2] state |Ψ〉

Sk|Ψ〉 = |Ψ〉. (3)

The Sk ’s are products of single-qubit operators. Ad-
vantage: it is much easier to measure the wit-
nesses locally. However, the witness is more sen-
sitive to noise than the projector-based witness.

Projector-based Witnesses
I The following entanglement witness detects gen-

uine three-qubit entanglement based on a projector
to a GHZ state, |GHZ3〉 = |000〉+ |111〉,

W P
GHZ :=

1
2

� −|GHZ3〉〈GHZ3|. (4)

Witnesses similar to W P
GHZ have already been used

for experimental detection of entanglement [1].

Entangled states
detected

by the witness
Separable states

Entangled states

I Witness W P
GHZ detects only genuine three-party

entanglement, i.e., it does not detect bisepara-
ble pure states or their mixtures. [ For exam-
ple, (12)(3) biseparable pure states have the form
|Ψ〉 = |Ψ12〉⊗ |Ψ3〉. Note that qubit (3) is not en-
tangled with the other qubits. ]

Local Decomposition
I For an experiment, witness (4) must be decom-

posed into locally measurable terms [1]. The local
decompostion of a projector-based witness is quite
complicated. For example,

W P
GHZ =

1
8

[
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y )(σ(2)

x +σ(2)
y )(σ(3)

x +σ(3)
y )

+
1
2
(σ(1)

x −σ(1)
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.

(5)

I Decomposition (7) has 6 locally measurable terms.
For these, 4 measurement settings are needed.

(i.e., the σ(1)
z σ(2)

z and σ(2)
z σ(3)

z terms can be mea-
sured with one setup. One has to measure σz for
each qubit and then compute the correlations.)

Stabilizer Witnesses
I The following witnesses are based on stabilizing

operators. The first one detects genuine three-
party entanglement around a GHZ state

WGHZ3 := 2 · � −σ(1)
z σ(2)

z −σ(2)
z σ(3)

z −σ(1)
x σ(2)

x σ(3)
x .
(6)

It needs only 3 locally measurable terms and 2
measuring setups. (Compare with W P

GHZ given in
Eq. (5).)

I Witness detecting genuine four-qubit entanglement
around a GHZ state

WGHZ4 : = 3 · � −σ(1)
z σ(2)

z −σ(2)
z σ(3)

z −σ(3)
z σ(4)

z

− σ(1)
x σ(2)

x σ(3)
x σ(4)

x . (7)

I Witness detecting four-qubit entanglement around
a cluster state [3]

Wcl4 := 3 · � −σ(1)
x σ(2)

z −σ(1)
z σ(2)

x σ(3)
z

− σ(2)
z σ(3)

x σ(4)
z −σ(3)

z σ(4)
x . (8)

No Biseparability
I The witness WGHZ3 (see Eq. (6)) detects genuine

three-party entanglement. Proof. First let us con-
sider (1)(23) biseparable product states. Then
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akbk ≤
∣
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(9)

where for the Cauchy-Schwarz inequality

~a =
(〈

σ(1)
z

〉

,〈1〉 ,
〈

σ(1)
x

〉)

,

~b =
(〈

σ(2)
z

〉

,
〈
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z σ(3)

z

〉

,
〈

σ(2)
x σ(3)
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,

and we used that
∣

∣~a
∣

∣ ≤
√

2 and
∣

∣~b
∣

∣ ≤
√

2. From
Eq. (9) it follows, that for any (1)(23) biseparable
product state 〈WGHZ3〉 ≥ 0. Similar proofs can be
constructed for the (2)(13) and (12)(3) partitions.

Bounds for Separable States
I The following entanglement witness detects entan-

glement (but not necessarily genuine N-qubit en-
tanglement) close to an N-qubit GHZ state

QGHZN :=(N−1)

(

� −
N

∏
k=1

σ(k)
x

)

−
N−1

∑
k=1

σ(k)
z σ(k+1)

z .

(10)

I The following entanglement witness detects entan-
glement for states close to an N-qubit cluster state
[3,4]

QclN :=
N
2
· � −

N

∑
k=1

σ(k−1)
z σ(k)

x σ(k+1)
z , (11)

where N is even and σ(0)
z = σ(N+1)

z = 1.

I For both stabilizer witnesses the number of terms
increases linearly with the number of qubits.

Sensitivity to Noise
I A three-qubit GHZ state is detected as three-qubit

entangled by the witness WGHZ3 after mixing with
the totally mixed state

ρ = pρGHZ3 +(1− p)

�

8
(12)

if p > 2/3 ≈ 0.67. WGHZ3 is somewhat more sen-
sitive to noise than the projector-based witness
W P

GHZ which detects entanglement if p > 3/7 ≈
0.43.

I A four-qubit GHZ state is detected as four-qubit en-
tangled by WGHZ4 if p > 3/4.

I Many-qubit GHZ and cluster states are detected
as entangled by QGHZN and QclN , respectively, if
p > 1/2.

The Hamiltonian as a Witness
I Based on similar ideas, spin-chain Hamiltonians

can also be used as entanglement witnesses. For
example, let us consider the Heisenberg-chain
Hamiltonian

HH =
N−1

∑
k=1

σ(k)
x σ(k+1)

x +σ(k)
y σ(k+1)

y +σ(k)
z σ(k+1)

z .

(13)

I The expectation value for separable states is
bounded by Emin,sep = −N +1. The proof is based
on

〈
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≤ 1. (14)

I If the measured energy is less than Emin,sep then
the system is necessarily entangled. (The real
ground state energy is around −3N/2.)

Conclusions
I We have presented a method for constructing en-

tanglement witnesses with simple local decompo-
sition based on stabilizing operators. These wit-
nesses can detect genuine multi-party entangle-
ment around GHZ and cluster states. The ap-
proach can straightforwardly be generalized for
graph states.
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