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Proving the Cramér-Rao bound

The Cramér-Rao bound is a fundamental relation in metrology.

It is an expression with the quantum Fisher information (QFI),
which is a complicated function of the state and the Hamiltonian.

We will look for a simple proof of the Cramér-Rao bound based on
fundamental uncertainty relations.

We will exploit the fact that the QFI is the convex roof of the
variance.
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Cramér-Rao bound
Error propagation formula

(∆θ)2
A =

(∆A)2

|∂θ〈A〉|2
=

(∆A)2

|〈i[A,B]〉|2
.

The precision of the estimation is bounded as

(∆θ)2 ≥ 1
m

min
A

(∆θ)2
A,

where m is the number of independent repetitions.

Let us consider a decomposition of the density matrix

% =
∑

k

pk |ψk 〉〈ψk |.

The Heisenberg uncertainty for the components ris

(∆A)2
ψk

(∆B)2
ψk
≥ 1

4
|〈i[A,B]〉ψk |

2.



Cramér-Rao bound II
Let us consider the inequality(∑

k

pkak

)(∑
k

pkbk

)
≥

(∑
k

pk
√

akbk

)2

,

where ak ,bk ≥ 0.

Hence, we arrive at[∑
k

pk (∆A)2
ψk

][∑
k

pk (∆B)2
ψk

]
≥ 1

4

[∑
k

pk |〈i[A,B]〉ψk |

]2

.

We can choose the decomposition such that∑
k

pk (∆B)2
ψk

= FQ[%,B]/4.

Due to the concavity of the variance we also know that∑
k

pk (∆A)2
ψk
≤ (∆A)2.



Cramér-Rao bound III
Hence, it follows that

(∆A)2
%

[
4 min

pk ,ψk

∑
k

pk (∆B)2
ψk

]
≥ |〈i[A,B]〉%|2.

Then,
(∆A)2

%

|〈i[A,B]〉%|2
≥ 1[

4 minpk ,ψk

∑
k pk (∆B)2

ψk

] .
Finally, for the precision of estimation, if we measure A and the
Hamiltonian is B, we have

(∆θ)2 ≥ 1
m

min
A

(∆θ)2
A ≥

1
m
× 1

4 min
pk ,ψk

∑
k

pk (∆B)2
ψk︸ ︷︷ ︸

FQ [%,B], the QFI!

.



Summary
We showed how to derive the Cramér-Rao bound with the convex
roof of the variance.
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