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0 Motivation
@ What are entangled states useful for?



What are entangled states useful for?

@ Entangled states are useful, but not all of them are useful for
some task.

@ Entanglement is needed for beating the shot-noise limit in
quantum metrology.

@ Intriguing question: Are states with a positive partial transpose
useful for metrology? Can they also beat the shot-noise limit?



What are entangled states useful for?

PPT states

separable
© states

metrologically local states
useless



e Bacground
@ Quantum Fisher information



Quantum metrology

@ Fundamental task in metrology

0 U (6)=exp(—id0) op

@ We have to estimate 6 in the dynamics

U = exp(—IiA¥b).



Precision of parameter estimation

@ Measure an operator M to get the estimate 6. The precision is
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The quantum Fisher information

@ Cramér-Rao bound on the precision of parameter estimation
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where Fg[o, A] is the quantum Fisher information.
@ The quantum Fisher information is
(M = N)? 2
Falo,Al=2» ———[(k|A|ll)|*,
ale. A =2 3 S AN

where o = 37, AlK) (K].



Special case A = J,

@ The operator A is defined as

N
A=J = Zjl(”), le{x,y,z}.
n=1

@ Magnetometry with a linear interferometer




e Bacground

@ Recent findings on the quantum Fisher information



Properties of the Fisher information

Many bounds on the quantum Fisher information can be derived from
these simple properties:

@ For pure states, it equals four times the variance,
FIIW) (W], A] = 4(AA)?,,.

@ For mixed states, it is convex.



The quantum Fisher information vs. entanglement

@ For separable states
Falo. ] <N, I=xy,z

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Glihne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

@ For states with at most k-particle entanglement (k is divisor of N)
FO[Qv J/] < KN.

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

@ Macroscopic superpositions (e.g, GHZ states, Dicke states)

Fale, Ji] o< N2,

[F. Frowis, W. Dir, New J. Phys. 14 093039 (2012).]



Most important characteristics used for estimation

The quantum Fisher information is the convex roof of the variance
Folo, Al = 4 min AA)?,,
alo, Al pk,wkgpk( )"k

where
0= PklVk) (Wil
K

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013);
GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

@ Extended convexity for non-unitary dynamics.
[S. Alipour, A. T. Rezakhani, Phys. Rev. A 91, 042104 (2015).]

@ Convex roof over purifications.
[R. Demkowicz-Dobrzanski, J. Kotodynhski, M. Guta, Nature Comm. 2012.]



Witnessing the quantum Fisher information based

on few measurements

@ Let us bound the quantum Fisher information based on some

measurements.
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Quantum Fisher information vs. Fidelity with respect to (a) GHZ states
and (b) Dicke states for N = 4,6,12.

[Apellaniz et al., Phys. Rev. A 2017]



Continuouity of QFI and QFI for symmetric states

@ Arbitrarily small entanglement can be used to get close to

Heisenberg scaling.
@ The difference between the QFI of two states can be bounded by

the distance of the two states.
@ Bound on the QFI with the geometric measure of entanglement.
[R. Augusiak, J. Kotodynski, A. Streltsov, M. N. Bera, A. Acin, M. Lewenstein,
PRA 2016]
@ Continuity in the non-unitary case:
[A. T. Rezakhani, S. Alipour, M. Hassani, arXiv:1507.01736]

@ Random pure states of distinguishable particles typically do not
lead to super-classical scaling of precision.
@ Random states from the symmetric subspace typically achieve the
optimal Heisenberg scaling.
[M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kotodynski, A. Acin, M. Lewenstein,
PRX 2016]



© Maximizing the QFI for PPT states
@ Results so far



Results so far concerning metrologically useful

PPT states

@ Bound entangled states with PPT and some non-PPT partitions.
@ Violates an entanglement criterion with three QFI terms.
[ P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H.
Weinfurter, L. Pezze, and A. Smerzi, PRA 85, 022321 (2012). ]

@ Non-unlockable bound entangled states with PPT and some
non-PPT partitions.
@ Violates the criterion with a single QFI term, better than shot-noise
limit.
[ . Czekaj, A. Przysiezna, M. Horodecki, P. Horodecki, Phys. Rev. A 92, 062303
(2015). ]
on non]o.ca]ity [43]).to ans;ver would be, Is there any family
of quantum states that allows for a general Local Hidden
Variables (LHV) model but can be used to obtain sub-shot-
noise (i.e., better than classical) quantum metrology? This
question is related to another question (especially in the context
of both general requirements in quantum metrology [26] and
recent results on nonlocality [43]) regarding whether there is
any chance for sub-shot-noise metrology for states obeying the
PPT condition with respect to any cut. While the present result



© Maximizing the QFI for PPT states

@ Our results



We look for bipartite PPT entangled states and multipartite states that
are PPT with respect to all partitions.



Maximizing the QFI for PPT states: brute force

@ Maximize the QFI for PPT states. Remember
(Ak — A1) 2
Folo, Al =2 ~————|(k|A|D|7,
ol Al =23 kA

where o = Y, \¢|k) (K.

@ Difficult to maximize a convex function over a convex set. The
maximum is taken on the boundary of the set.

@ Not guaranteed to find the global maximum.

@ Note: Finding the minimum is possible!



Maximizing the QFI for PPT state: our method

@ We mentioned that the QFI gives a bound on the precision of the
parameter estimation

1 [0M)? _ (M, A)?
(802 (AM)E — (AM)?

@ The bound is sharp

Falo, Al > oy,

(dynamicsis U = e~

(M, A])2
Falo, Al = mﬁx <I([AI\/I)]2>Q'

[ M. G. Paris, Int. J. Quantum Inform. 2009. Used, e.g., in F. Fréwis, R. Schmied,
and N. Gisin, 2015; |. Appelaniz et al., NJP 2015.]

The maximum for PPT states can be obtained as

max_Fqglo, Al = max maxw
ois PPT ale; ~ oisPPT M~ (AM)2




Sew-saw algorithm for maximizing the precision

Random
operator

M
maximize over PPT states o
for a given M

£

4

4

maximize over M
for a given PPT state o




Maximize over PPT states for a given M

Best precision for PPT states for a given operator M can be obtained
by a semidefinite program.

Proof—Let us define first
fu(X,Y)=min  Tr(M?p),
o

st.  0>0,0"™ >0forall k, Tr(o) =1,
(ilM,A]) = X and (M) = Y.

The best precsion for a given M and for PPT states is

Cf(X,Y) = Y2
2 M ;
(A0 =min =7

The state giving the best precision is oppropt-

Approach also maximzing over g, for noisy states:
K. Macieszczak, arXiv:1312.1356v1 (thanks Janek for the reference!).



Maximize over M for a given PPT state

For a state o, the best precision is obtained with the operator given by
the symmetric logarithmic derivative

MZZ

where ¢ = >, \¢|k) (K.

Ik (I[(k|AT),



Convergence of the method

The precision cannot get worse with the iteration!



Convergence of the method Il

2 4 6 8 10 12 14
J (number of steps)
Generation of the 4 x 4 bound entangled state.
(blue) 10 attempts. After 15 steps, the algorithm converged.
(red)  Maximal quantum Fisher information for separable states.



Robustness of the states

Q(p) = (1 - p)Q + POnoise

@ Robustness of entanglement: the maximal p for which o(p) is
entangled for any separable gpoise-
[ Vidal and Tarrach, PRA 59, 141 (1999). ]

@ Robustness of metrological usefulness: the maximal p for which
o(p) outperforms separable state for any separable gnoise-



Robustness of the states Il

’ System ‘ A ‘ »FQ[QaA] ‘ Fésep) ‘ Pwhite noise
four qubits J 4.0088 | 4 0.0011
three qubits 4 B 1 2.0021 |2 0.0005
2x4
(three qubits, 4 3 | 2.0033 |2 0.0008
only 1:23is PPT)

Multiqubit states



Robustness of the states Il

’ d ‘ Falo, Al ‘ Pwhite noise ‘ Prngise ‘
3 | 8.0085 0.0006 0.0003
4 | 9.3726 0.0817 0.0382
5 | 9.3764 0.0960 0.0361
6 10.1436 0.1236 0.0560
7

8

10.1455 | 0.1377 | 0.0086
10.6667 | 0.1504 | 0.0670
9 |10.6675 | 0.1631 | 0.0367
10 | 11.0557 | 0.1695 | 0.0747
11 1 11.0563 | 0.1807 | 0.0065
12 | 11.3616 | 0.1840 | 0.0808

@ d x d systems.

@ Maximum of the quantum Fisher information
for separable states is 8.

@ The operator A is not the usual J,.



Robustness of the states IV: 4 x 4 bound

entangled PPT state

Let us define the following six states

[We) = (10,1) +12,8))/V2, [Wz) = (]1,0) + [3,2))/V2,
W3) = (11,1) +12,2))/V2, [W4) = (|0,0) + [3,3))/V2,
[Ws) = (1/2)(|0,3) + [1,2)) +(2,1)/v2,

[We) = (1/2)(—10,3) +[1,2)) + 13,0)/v2.

Our state is a mixture
4 6
Oaxa =P Y _ W) (Wal + 9D [Wp) (W,
n=1 n=>5

where g = (V2 —1)/2 and p = (1 — 2q)/4. We consider the operator
A=H®1+1®H,

where H = diag(1,1,—1,—1).



Negativity

Apart from making calculations for PPT bound entangled states, we
can also make calculations for states with given minimal eigenvalues
of the partial transpose, or for a given negativity.

[ G. Vidal and R. F. Werner, PRA 65, 032314 (2002). ]



Entanglement

| Bipartite state | Entanglement |

3x3 0.0003
4 x4 0.0147
5x5 0.0239
6 x6 0.0359
7x7 0.0785
UPB3x3 0.0652
Breuer4 x4 | 0.1150

Convex roof of the linear entanglement entropy. The entanglement is
also shown for the 3 x 3 state based on unextendible product bases
(UPB) and for the Breuer state with a parameter A = 1/6.

[ G. Téth, T. Moroder, and O. Gihne, PRL 114, 160501 (2015). ]



Metrologically useful quantum states with LHV

models (PPT)

Consider the 2 x 4 state listed before. Possible to construct
numerically a LHV model for the state.

\/

[ F. Hirsch, M. T. Quintino, T. Vértesi, M. F. Pusey, and N. Brunner, PRL 2016;
D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk, PRL 2016. ]



Metrologically useful quantum states with LHV

models (non-PPT)

@ Two-qubit Werner state p|V—)(W~| + (1 — p)1/4, with
(W) = (jo1) —[10))/v2.

@ Better for metrology than separable states (Fq > 2) for
p>1-—0.3596 = 0.6404.

@ They do not violate a Bell inequality for p < 0.6829.

[ F. Hirsch, M. T. Quintino, T. Vértesi, M. Navascués, N. Brunner, Quantum 2017;
A. Acin, N. Gisin, B. Toner, PRA 2006. |



Cluster states

Cluster states: resource in measurement-based quantum computing
[ R. Raussendorf and H. J. Briegel, PRL 2001. ]
@ Fully entangled pure states.
@ Violate a Bell inequality
[ V. Scarani, A. Acin, E. Schenck, M. Aspelmeyer, PRA 2005; O. Gihne, GT, P.
Hyllus, H. J. Briegel, PRL 2005; GT, O. Guhne, and H. J. Briegel, PRA 2006. ]
@ Metrologically not useful
[ P. Hyllus, O. Glihne, and A. Smerzi, PRA 2010. ]

\/



Non-local PPT states

Counterexample for the Peres conjecture

\/

[ T. Vértesi and N. Brunner, Nature Communications 2015. ]



@ We presented quantum states with a positive partial transpose
with respect to all bipartitions that are useful for metrology.

See:
Géza Toéth and Tamas Vértesi,

Quantum states with a positive partial transpose
are useful for metrology,

Phys. Rev. Lett. 120, 020506 (2018).

THANK YOU FOR YOUR ATTENTION!

T Al :
s : E INNOVACION EUSKO JAURLARITZA

GOBIERNO VASCO



https://arxiv.org/abs/1709.03995
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