How long does it take to obtain a physical density matrix?

L. Knips^{1,2}, C. Schwemmer^{1,2}, N. Klein^{1,2}, J. Reuter³, G. Tóth^{4,5,6}, and H. Weinfurter^{1,2}

¹Max-Planck-Institut für Quantenoptik, Garching, Germany ²Department für Physik, Ludwig-Maximilians-Universtät, München, Germany ³Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany ⁴Theoretical Physics, University of the Basque Country, Bilbao, Spain ⁵IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ⁶Wigner Research Centre for Physics, Budapest, Hungary

> Cartagena, Spain 12 May 2017

- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Why tomography is important?

- Many experiments aiming to create many-body entangled states.
- Quantum state tomography can be used to check how well the state has been prepared.
- However, there are some long standing problems:
 - the number of measurements scales exponentially with the number of qubits,
 - the "raw" density matrices obtained from state tomography is not physical, etc.

- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Physical systems

State-of-the-art in experiments

- 14 qubits with trapped cold ions
 T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Haensel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011).
- 10 qubits with photons
 W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, Nature Physics, 6, 331 (2010).

- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Only local measurements are possible

Definition

A single local measurement setting is the basic unit of experimental effort.

A local setting means measuring operator $A^{(k)}$ at qubit k for all qubits.

$$A^{(1)}$$
 $A^{(2)}$ $A^{(3)}$... $A^{(n)}$

All two-qubit, three-qubit correlations, etc. can be obtained.

$$\langle \textbf{A}^{(1)} \textbf{A}^{(2)} \rangle, \langle \textbf{A}^{(1)} \textbf{A}^{(3)} \rangle, \langle \textbf{A}^{(1)} \textbf{A}^{(2)} \textbf{A}^{(3)} \rangle...$$

- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Full quantum state tomography

 The density matrix can be reconstructed from 3ⁿ measurement settings.

Example

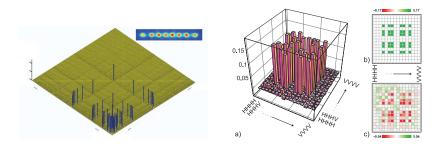
For n = 4, the measurements are

- 1. X X X X X 2. X X X Y
- 3. X X X Z
- 3⁴. Z Z Z Z

 Note again that the number of measurements scales exponentially in n.

- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Experiments with ions and photons



- 8 ions: H. Haeffner, W. Haensel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Koerber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643-646 (2005).
- 4 photons: N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98, 063604 (2007).
- 6 photons: C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D. Gross, O. Gühne, and H. Weinfurter, Phys. Rev. Lett. 113, 040503 (2014).

- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Obtain a density matrix

The density matrix can be decomposed into correlations as

$$\varrho = \frac{1}{2^n} \sum_{\mu} T_{\mu} \sigma_{\mu},$$

where

$$\sigma_{\boldsymbol{\mu}} = \sigma_{\mu_1} \otimes \sigma_{\mu_2} \otimes \cdots \otimes \sigma_{\mu_n},$$

 $\mu_i \in \{0, 1, 2, 3\}$, and σ_0 denotes the identity matrix.

The correlation matrix is defined as

$$T_{\mu} = \langle \sigma_{\mu} \rangle.$$

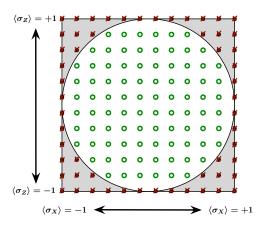
Obtain a density matrix II

- How can we obtain the estimate $\tilde{\varrho}$? We just measure $T_{\mu} = \langle \sigma_{\mu} \rangle$. (linear inversion)
- Problem: we have finite number of measurements.
- Hence, we cannot get $\langle \sigma_{\mu} \rangle$ exactly and our state will not be physical.

• The consequence is not only a small error, but that $\varrho \geq 0$ is not fulfilled.

Obtain a density matrix III

• 1 qubit, 11 measurements.



Obtain a density matrix IV

The negative eigenvalues are

- due to finite statistics,
- are not due to some experimental error.

Why negative eigenvalues are a problem?

We cannot calculate

- fidelities with a mixed state,
- entropies,
- purity,
- entanglement, etc.

We can still calculate

• the fidelity with a pure state (=expectation value of a projector).

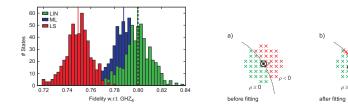
Fitting

- Method to get rid of the negative eigenvalues of ϱ .
- Find the physical density matrix in a best agreement with the experimental data.
- Main methods: an elegant theory using maximum likelihood, least squares.

[Z. Hradil, Phys. Rev. A 55, R1561 (1997); D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A 64, 052312 (2001); R. Blume- Kohout, New J. Phys. 12, 043034 (2010).]

Problems with fitting

- Bias: ML is unbiased for infinite statistics. We have finite data.
- Fidelity changes, detection of fake entanglement



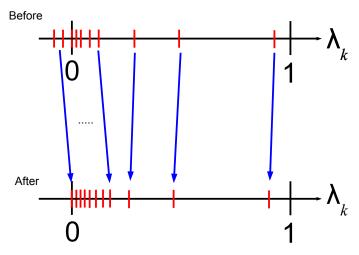
 Unfortunately, the fidelity with respect to the pure state we wanted to prepare also changes.

O center of mass

 $\rho < 0$

Problems with fitting II

Another artifact: About half of the eigenvalues become zero.



Small eigenvalues increase Large eigenvalues decrease

Heuristic explanation of the problem

Fitting is

- Like frequency analysis.
- Large frequencies do not matter if we have finite data.
 (Harald Weinfurter)

- Like the police is looking for someone, and the search warrant says that the person is 3 meter tall.
- Distance to non-physical states can have various definitions.
 (GT)

- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- 3 Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Let us analyze the problem

Completely mixed state

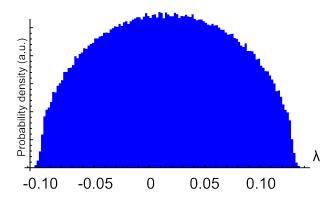
$$\varrho_{\rm wn} = \frac{1}{2^n} \sigma_{0,0,\dots,0} = \frac{1}{2^n} \mathbb{1}$$

with 2^n degenerate eigenvalues $\lambda_i = 1/2^n$.

 We use overcomplete tomography, which is based on measuring the Pauli correlations.

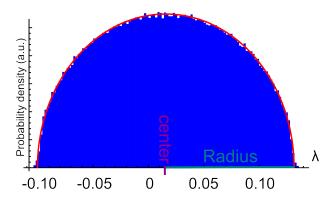
Distribution of eigenvalues

- Consider n = 6 qubit maximally mixed state
- Simulate *N* = 100 measurements per setting
- Estimate density matrix
- Repeat 10000 times
- Histogram of eigenvalues



Distribution of eigenvalues

- Consider n = 6 qubit maximally mixed state
- Simulate *N* = 100 measurements per setting
- Estimate density matrix
- Repeat 10000 times
- Histogram of eigenvalues



Distribution of eigenvalues II

The Wigner semicircle appears also in random matrix for a special type of matrices

- all elements have the same Gaussian distribution,
- they are not correlated with each other.

Now the elements of the density matrix obtained from tomography

- have different variances,
- they are even correlated with each other.

Highly non-trivial result: We prove that we obtain the Wigner semicircle distribution for the usual, overcomplete tomography.

Derivation (slide from Lukas Knips)

- Concept: compare moments of eigenvalue distribution to moments of ideal semicircle function
- Define semicircle distribution $f_{c,R}(x) = \frac{2}{\pi R^2} \sqrt{(x-c)^2 R^2}$

with (even) moments

$$\begin{split} m_2^w &= \int_{-\infty}^\infty f_{0,R}(x) \, x^2 x = \left(\frac{R}{2}\right)^2, \\ m_4^w &= \int_{-\infty}^\infty f_{0,R}(x) \, x^4 x = 2 \left(\frac{R}{2}\right)^4, \\ m_0^w &= \int_{-\infty}^\infty f_{0,R}(x) \, x^6 x = 5 \left(\frac{R}{2}\right)^6, \\ m_8^w &= \int_{-\infty}^\infty f_{0,R}(x) \, x^8 x = 14 \left(\frac{R}{2}\right)^8. \end{split}$$

Using the Catalan numbers

$$C_{j+1} = C_j \frac{2(2j+1)}{j+2}$$

we obtain

$$m_{2k}^{\text{sc}} = \int_{-\infty}^{\infty} f_{0,R}(x) x^{2k} x = C_k \left(\frac{R}{2}\right)^{2k}$$

- Odd (centralized) moments vanish
- Goal: reproduce Catalan numbers in distribution of eigenvalues

 Calculate all moments of eigenvalue distribution:

$$\begin{split} \boldsymbol{m}_{k}^{ev} &= \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \mathbb{E} \left[\boldsymbol{\lambda}_{i}^{k} \right] \\ &= \frac{1}{2^{n}} \mathbb{E} \left[\sum_{i=1}^{2^{n}} \boldsymbol{\lambda}_{i}^{k} \right] \\ &= \mathbb{E} \left[\frac{1}{2^{n}} \operatorname{Tr} \left(\boldsymbol{D}^{k} \right) \right] \\ &= \mathbb{E} \left[\frac{1}{2^{n}} \operatorname{Tr} \left(\left(\boldsymbol{U}^{\dagger} \boldsymbol{\varrho} \boldsymbol{U} \right)^{k} \right) \right] \\ &= \mathbb{E} \left[\frac{1}{2^{n}} \operatorname{Tr} \left(\boldsymbol{\varrho}^{k} \right) \right] \end{split}$$

 Second moment of (centered) distribution:

$$\begin{split} m_2^{\text{ev}} &= \frac{1}{2^{3n}} \sum_{\vec{\mu}, \vec{\nu}} \mathbb{E} \left[T_{\vec{\mu}} T_{\vec{\nu}} \right] 2^n \delta_{\vec{\mu}, \vec{\nu}} \\ &= \frac{2^n}{2^{3n}} \sum_{\vec{\mu}} \mathbb{E} \left[T_{\vec{\mu}}^2 \right] \end{split}$$

overcomplete Pauli scheme:

$$\begin{split} m_2^{\text{ev}} &= \frac{1}{4^n N} \sum_{j=0}^{n-1} \binom{n}{j} \frac{3^{n-j}}{3^j} \\ &= \frac{10^n - 1}{12^n} \frac{1}{N}. \end{split}$$

with n qubits, N events per basis element.

• Comparision of m_2^{sc} , m_2^{ev} yields: $R = 2\sqrt{\frac{10^n - 1}{12^n}} \frac{1}{\sqrt{N}}$

Fourth moment:

$$\begin{aligned} & \text{Gold in model in } \\ & \text{How } \\ & = \frac{1}{2^m} \sum_{i=1}^m \mathbb{E} \left[X_i^4 \right] \\ & = \frac{1}{2^{5m}} \sum_{\vec{\mu}, \vec{\nu}_i \in \mathcal{N}} \mathbb{E} \left[T_{\vec{\mu}} T_{\vec{\nu}} T_{\vec{\nu}_i} T_{\vec{\nu}_i} \right] \\ & = \frac{1}{2^{5m}} \sum_{\vec{\mu}, \vec{\nu}_i \in \mathcal{N}_i} \mathbb{E} \left[T_{\vec{\mu}}^2 T_{\vec{\nu}_i}^2 \right] \\ & \quad \cdot \text{Tr} \left(\sum_{i=1}^6 \mathcal{P}_1 \left(\sigma_{\vec{\mu}} \sigma_{\vec{\mu}} \sigma_{\vec{\nu}} \sigma_{\vec{\nu}} \right) \right) \end{aligned}$$

· Sixth moment:

$$\begin{split} m_{6}^{\text{rec}} &= \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \mathbb{E} \left[\lambda_{i}^{6} \right] \\ &\approx \frac{1}{2^{7n}} \frac{1}{3!} \sum_{\vec{\mu}} \sum_{\vec{\nu} \in \left\{\vec{\nu} \neq \vec{\mu}\right\}} \sum_{\vec{\gamma} \in \left\{\vec{\nu} \neq \vec{\mu}\right\}} \\ &\mathbb{E} \left[T_{\vec{\theta}}^{2} T_{\vec{\theta}}^{2} \tilde{T}_{i}^{2} \right] \cdot \\ &\text{Tr} \left(\sum_{i=1}^{20} \mathcal{P}_{\ell} \left(\sigma_{i} \sigma_{\vec{\mu}} \sigma_{\vec{\nu}} \sigma_{\vec{\nu}} \sigma_{\vec{\gamma}} \sigma_{\vec{\gamma}} \right) \end{split}$$

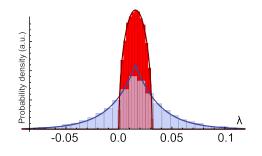
non-crossing crossing

 Only non-crossing partitions (amount given by Catalan numbers) contribute:

$$m_k^{\mathrm{ev}} = \frac{1}{2^n} \sum_{i=1}^{2^n} \mathbb{E} \left[\lambda_i^{2k} \right] = \frac{C_k}{N^k}$$
 \square

Other type of tomography

Not all tomographies lead to a Wigner semicircle



[F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A 64, 052312 (2001).]

How long do we have to measure to get a physical state?

Pure state mixed with white noise

$$\varrho_{\mathbf{q}} = \mathbf{q} |\psi\rangle\langle\psi| + (\mathbf{1} - \mathbf{q})\varrho_{\rm cm}.$$

• The center of the semicircle is shifted to

$$c_q=\frac{1-q}{2^n-r}.$$

The radius of the semicircle is

$$R = 2\sqrt{\frac{10^n - 1}{12^n}} \frac{1}{\sqrt{N}} \approx 2\left(\frac{5}{6}\right)^{\frac{n}{2}} \frac{1}{\sqrt{N}}.$$

• Physical ρ if

$$R \leq c_q \Rightarrow N \geq N_0 = 4 \left(rac{5}{6}
ight)^n \left(rac{2^n-1}{1-q}
ight)^2.$$

How long do we have to measure to get a physical state? II

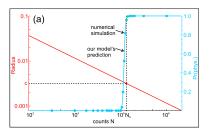
• The minimum number of measurements needed is

$$N_0 = 4\left(\frac{5}{6}\right)^n \left(\frac{2^n - 1}{1 - q}\right)^2,$$

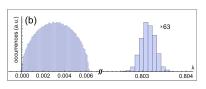
where *n* is the number of qubits.

How long do we have to measure to get a physical state? III

 Six-qubit GHZ state mixed with q = 0.2 white noise, radius and probability of physical matrix



• The eigenvalues of the noisy state at $N = N_0$ measurements



- Motivation
 - Why quantum tomography is important?
- Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
- Full quantum state tomography
 - Basic ideas and scaling
 - Experiments
- Obtaining a physical density matrix
 - The usual fitting procedure to obtain a physical matrix
 - Our insight: the key are the eigenvalues
 - Our proposal: Hypothesis testing

Hypothesis testing

Assume

$$\varrho = p\varrho_r + (1-p)\frac{1}{2^n},$$

where ϱ_r is a pure of a low rank state.

 Colored noise? We cannot tell, since the Wigner semicircle will cover all structure.

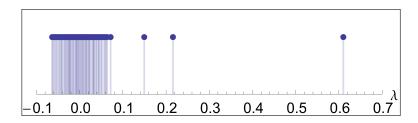
Hypothesis about how many eigenvalues are "real".

Hypothesis testing

We prepare experimentally a six-qubit Dicke state

$$|D_6^{(3)}\rangle = \frac{1}{\sqrt{6}}(|000111\rangle + |001011\rangle + ... + |111000\rangle).$$

- Quantum state tomography with around 230 events per setting.
- Hypothesis: 3 eigenvalues + noise. Is this correct?

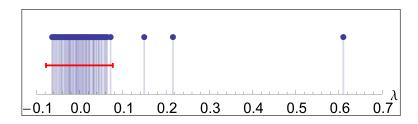


Hypothesis testing II

We prepare experimentally a six-qubit Dicke state

$$|D_6^{(3)}\rangle = \frac{1}{\sqrt{6}}(|000111\rangle + |001011\rangle + ... + |111000\rangle).$$

- Quantum state tomography with around 230 events per setting.
- Hypothesis: 3 eigenvalues + noise. Is this correct?

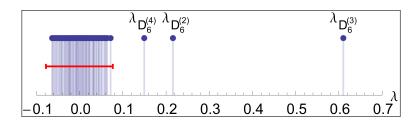


Hypothesis testing III

We prepare experimentally a six-qubit Dicke state

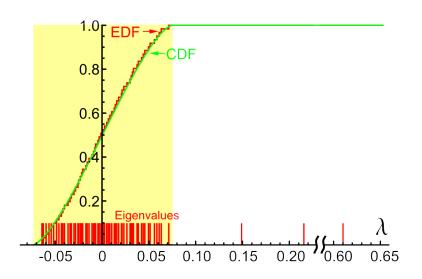
$$|D_6^{(3)}\rangle = \frac{1}{\sqrt{6}}(|000111\rangle + |001011\rangle + ... + |111000\rangle).$$

- Quantum state tomography with around 230 events per setting.
- Hypothesis: 3 eigenvalues + noise. Is this correct?



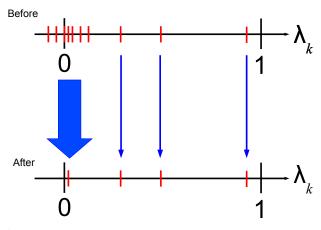
Is the hypothesis correct?

 Empirical distribution function (EDF) vs. Cumulative distribution function (CDF) of the Wigner semicircle



Our method in a single figure

Large, useful eigenvalues are not affected!

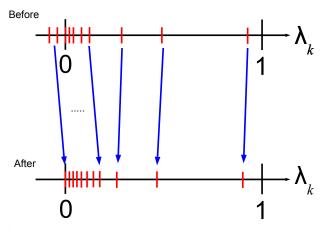


Small eigenvalues are replaced by their average

Large eigenvalues do not change

Just to compare: old method

Large, useful eigenvalues are affected!



Small eigenvalues increase Large eigenvalues decrease

Summary

- We discussed the distribution of the eigenvalues of density matrices obtained from tomography.
- We proposed a simple solution for a long standing problem, namely, getting rid of the negative eigenvalues.
- I thank Lukas Knips for most of the figures for this talk.

See:

L. Knips, C. Schwemmer, N. Klein, J. Reuter, G. Tóth, and H. Weinfurter,

How long does it take to obtain a physical density matrix?, arxiv:1512.06866.

THANK YOU FOR YOUR ATTENTION!

