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Why is quantum metrology interesting?

Recent technological development has made it possible to realize
large coherent quantum system, i.e., in cold gases.

Can such quantum systems outperform classical systems?

The problem can be understood better based on entanglement
theory.
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Estimating the angle of a clock arm

Classical case: arbitrary precision ("in principle").



Magnetometry with the fully polarized state
Let us see the quantum case.

N spin-1/2 particles, all fully polarized in the z direction.

Magtetic field B points to the y direction.
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Note the uncertainty ellipses. ∆θfp is the minimal angle difference
we can measure.



Magnetometry with the fully polarized state II

Collective angular momentum components

Jl :=
N∑

n=1

j(n)
l

for l = x , y , z, where j(n)
l are single particle operators.

Dynamics
Uθ = e−iJyθ,

where ~ = 1, and he angle θ is

θ = γBt ,

where γ is the gyromagnetic ratio, and t is the time.



Magnetometry with the fully polarized state IV
Measure an operator M to get the estimate θ.

The precision is given by the error propagation formula

(∆θ)2 = (∆M)2

|∂θ〈M〉|2
.

〈M 〉

θ

√(ΔM )2

tanα=∂θ 〈M 〉∣θ =0

α

Δθ



Magnetometry with the fully polarized state V

We measure the operator

M = Jx .
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Expectation value and variance

〈M〉(θ) = 〈Jz〉 sin(θ) + 〈Jx〉 cos(θ),

(∆M)2(θ) = (∆Jx )2 cos2(θ) + (∆Jz)2 sin2(θ)

+
(1

2〈JxJz + JzJx〉 − 〈Jx〉〈Jz〉
)

sin(2θ).

Using 〈Jx〉 = 0, in the θ → 0 limit

(∆θ)2 =
(∆M)2

|∂θ〈M〉|2
=

(∆Jx )2

〈Jz〉2
=

1
N
.



Magnetometry with the fully polarized state III

It is not like a classical clock arm, we have a nonzero uncertainty

(∆θ)2 =
1
N
.



Outline

1 Motivation
Why is quantum metrology interesting?

2 Simple examples of quantum metrology
Magnetometry with the fully polarized state
Magnetometry with the spin-squeezed state
Metrology with the GHZ state
Dicke states
Singlet states

3 Entanglement theory
Multipartite entanglement
The spin-squeezing criterion

4 Quantum metrology using the quantum Fisher information
Quantum Fisher information
Quantum Fisher information in linear interferometers

11 / 52



Magnetometry with the spin-squeezed state

We can increase the precision by spin squeezing
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fully polarized state (fp) spin-squeezed state (sq)

∆θfp and ∆θsq are the minimal angle difference we can measure.

We can reach
(∆θ)2 <

1
N
.
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Metrology with the GHZ state

Greenberger-Horne-Zeilinger (GHZ) state

|GHZN〉 = 1√
2

(|0〉⊗N + |1〉⊗N),

Unitary
Uθ = e−iJzθ.

Dynamics

|GHZN〉(θ) = 1√
2

(|0〉⊗N + e−iNθ|1〉⊗N),



Metrology with the GHZ state II

We measure
M = σ⊗N

x ,

which is the parity in the x-basis.

Expectation value and variance

〈M〉 = cos(Nθ), (∆M)2 = sin2(Nθ).

For θ ≈ 0, the precision is

(∆θ)2 =
(∆M)2

|∂θ〈M〉|2
= 1

N2 .

[ e.g., photons: D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger,
Phys. Rev. Lett. 82, 1345 (1999);
ions: C. Sackett et al., Nature 404, 256 (2000). ]



Metrology with the GHZ state III

We reached the Heisenberg-limit

(∆θ)2 =
1

N2 .

The fully polarized state reached only the shot-noise limit

(∆θ)2 =
1
N
.



Outline

1 Motivation
Why is quantum metrology interesting?

2 Simple examples of quantum metrology
Magnetometry with the fully polarized state
Magnetometry with the spin-squeezed state
Metrology with the GHZ state
Dicke states
Singlet states

3 Entanglement theory
Multipartite entanglement
The spin-squeezing criterion

4 Quantum metrology using the quantum Fisher information
Quantum Fisher information
Quantum Fisher information in linear interferometers

17 / 52



Dicke states
Symmetric Dicke states with 〈Jz〉 = 0 (simply “Dicke states” in the
following) are defined as

|DN〉 =

(
N
N
2

)− 1
2 ∑

k

Pk

(
|0〉⊗

N
2 ⊗ |1〉⊗

N
2

)
.

E.g., for four qubits they look like

|D4〉 =
1√
6

(|0011〉+ |0101〉+ |1001〉+ |0110〉+ |1010〉+ |1100〉) .

[photons: Kiesel, Schmid, GT, Solano, Weinfurter, PRL 2007;
Prevedel, Cronenberg, Tame, Paternostro, Walther, Kim, Zeilinger, PRL 2007;
Wieczorek, Krischek, Kiesel, Michelberger, GT, and Weinfurter, PRL 2009]

[cold atoms: Lücke et al., Science 2011; Hamley et al., Science 2011; C. Gross et al.,
Nature 2011]



Metrology with Dicke states
For our symmetric Dicke state

〈Jl〉 = 0, l = x , y , z, 〈J2
z 〉 = 0, 〈J2

x 〉 = 〈J2
y 〉 = large.

Linear metrology
U = exp(−iJyθ).

Measure 〈J2
z 〉 to estimate θ. (We cannot measure first moments,

since they are zero.)

y

z

x

Uncertainty
ellipse



Metrology with Dicke states

Dicke states are more robust to noise than GHZ states.

Dicke states can also reach the Heisenberg-scaling like GHZ
states.

[Metrology with cold gases: B. Lücke, M Scherer, J. Kruse, L. Pezze, F.
Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi,
C. Klempt, Science 2011.]

[Metrology with photons: R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P.
Hyllus, L. Pezze, A. Smerzi, PRL 2011.]
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Metrology with the singlet state

For our singlet state

〈Jl〉 = 0, 〈J2
l 〉 = 0, l = x , y , z,

Invariant under the actions of homogeneous magnetic fields, i.e.,
operations of the type exp(−iJ~nθ).

Sensitive to gradients.

We do not need to measure the homogeneous field, if we want to
estimate the gradient.

[ N. Behbood et al., Phys. Rev. Lett. 113, 093601 (2014), covered in Scientific American

"Quantum Entanglement Creates New State of Matter"; I. Urizar-Lanz et al., PRA 2013.]



Outline

1 Motivation
Why is quantum metrology interesting?

2 Simple examples of quantum metrology
Magnetometry with the fully polarized state
Magnetometry with the spin-squeezed state
Metrology with the GHZ state
Dicke states
Singlet states

3 Entanglement theory
Multipartite entanglement
The spin-squeezing criterion

4 Quantum metrology using the quantum Fisher information
Quantum Fisher information
Quantum Fisher information in linear interferometers

23 / 52



Entanglement

A state is (fully) separable if it can be written as∑
k

pk%
(1)
k ⊗ %

(2)
k ⊗ ...⊗ %

(N)
k .

If a state is not separable then it is entangled (Werner, 1989).



k -producibility/k -entanglement

A pure state is k -producible if it can be written as

|Φ〉 = |Φ1〉 ⊗ |Φ2〉 ⊗ |Φ3〉 ⊗ |Φ4〉....

where |Φl〉 are states of at most k qubits.

A mixed state is k -producible, if it is a mixture of k -producible pure
states.
[ e.g., Gühne, GT, NJP 2005. ]

If a state is not k -producible, then it is at least (k + 1)-particle
entangled.

2-entangled 3-entangled



k -producibility/k -entanglement II

Separable 

2-producible 

(N-1)-producible 

N-producible 

... ...
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The standard spin-squeezing criterion

Spin squeezing criteria for entanglement detection

ξ2
s = N

(∆Jx )2

〈Jy 〉2 + 〈Jz〉2
.

If ξ2
s < 1 then the state is entangled.

[Sørensen, Duan, Cirac, Zoller, Nature (2001).]

States detected are like this:

J
z
 is large

Variance of J
x 
is small

y

z

x



Multipartite entanglement in spin squeezing

Larger and larger multipartite entanglement is needed to larger
and larger squeezing ("extreme spin squeezing").
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N = 100 spin-1/2 particles, Jmax = N/2.

[Sørensen and Mølmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test:
Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).]



Generalized spin squeezing criteria
for Dicke states

The full set of entanglement criteria with collective observables
has been obtained.

One of these criteria is the following

〈J2
x 〉+ 〈J2

y 〉≤ (N − 1)(∆Jz)2 + N
2 .

It detects entanglement close to Dicke states.

[GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007)]



Multipartite entanglement detection around Dicke
states

Generalized spin squeezing inequality. BEC, 8000 particles.
28-particle entanglement is detected.
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J2
eff = J2

x + J2
y and Jmax = N/2.

[ Lücke, Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth, and C. Klempt, Phys. Rev. Lett. 112,

155304 (2014), also in Synopsys in physics.aps.org. ]



Generalized spin squeezing criteria
for singlet states

As we have said, the full set of entanglement criteria with
collective observables has been obtained.

Another one of these criteria is the following

(∆Jx )2 + (∆Jy )2 + (∆Jz)2≥ N
2 .

It detects entanglement close to singlet states.

[GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007)]



Singlets

For separable states of N spin-j particles

ξ2
singlet =

(∆Jx )2 + (∆Jy )2 + (∆Jz)2

Nj
≥ 1.

For the singlet

(∆Jx )2 + (∆Jy )2 + (∆Jz)2 = 0, ξ2
singlet = 0.

Number of particles entangled with the rest

Ne ≥ N(1− ξ2
singlet).

[ GT and M. W. Mitchell, New J. Phys 2010. ]

[ N. Behbood et al., Phys. Rev. Lett. 113, 093601 (2014), covered in Scientific American

"Quantum Entanglement Creates New State of Matter". ]



Our experience so far

We looked at various setups.

We find that better precision needs more entanglement.

Question: Is this general?

Answer: Yes.
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Quantum metrology

Fundamental task in metrology

ϱθϱ U (θ )=exp (−iAθ )

We have to estimate θ in the dynamics

U = exp(−iAθ).



Precision of parameter estimation (slide repeated)
Measure an operator M to get the estimate θ.

The precision is given by the error propagation formula

(∆θ)2 = (∆M)2

|∂θ〈M〉|2
.

〈M 〉

θ

√(ΔM )2

tanα=∂θ 〈M 〉∣θ =0

α

Δθ



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

For every M

(∆θ)2
M ≥

1
FQ[%,A]

,

where FQ[%,A] is the quantum Fisher information.

The bound is even more general, includes any estimation strategy,
even POVM’s.

The quantum Fisher information is

FQ[%,A] = 2
∑
k ,l

(λk − λl)
2

λk + λl
|〈k |A|l〉|2,

where % =
∑

k λk |k〉〈k |.



The optimal measurement

An optimal measurement can be carried out if we measure in the
eigenbasis of the symmetric logarithmic derivative L given as

L = 2i
∑
k ,l

λk − λl

λk + λl
|k〉〈l |〈k |A|l〉,

where % =
∑

k λk |k〉〈k |.

L is defined by
d%θ
dθ = 1

2(L%θ + %θL).

Unitary dynamics with the Hamiltonian A
d%θ
dθ = i(%θA− A%θ).

Hence, the formula above can be obtained.

Relation to the QFI: FQ[%,A] = Tr(L2%).



Multi-parameter estimation

The Cramér-Rao bound for the multi-parameter case is

C − F−1 ≥ 0.

C is now the covariance matrix with elements

Cmn = 〈θmθn〉 − 〈θm〉〈θn〉.

F is the Fisher matrix

Fmn ≡ FQ[%,Am,An] = 2
∑
k ,l

(λk − λl)
2

λk + λl
〈k |Am|l〉〈l |An|k〉,

where % =
∑

k λk |k〉〈k |.



Quantum Fisher information and the fidelity

The quantum Fisher information appears in the Taylor expansion of FB

FB(%, %θ) = 1− θ2 FQ [%,A]
4 +O(θ3),

where
%θ = exp(−iAθ)% exp(+iAθ).

Bures fidelity

FB(%1, %2) = Tr
(√√

%1%2
√
%1

)2

.

Clearly,
0 ≤ FB(%1, %2) ≤ 1.

The fidelity is 1 only if %1 = %2.



Convexity of the quantum Fisher information

For pure states, it equals four times the variance,

FQ[|Ψ〉,A] = 4(∆A)2
Ψ.

For mixed states, it is convex

FQ[%,A] ≤
∑

k

pkFQ[|Ψk 〉,A],

where
% =

∑
k

pk |Ψk 〉〈Ψk |.
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Magnetometry with a linear interferometer

The Hamiltonian A is defined as

A = Jl =
N∑

n=1

j(n)
l , l ∈ {x , y , z}.

There are no interaction terms.

The dynamics rotates all spins in the same way.



The quantum Fisher information vs. entanglement
For separable states

FQ[%, Jl ] ≤ N, l = x , y , z.

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

For states with at most k -particle entanglement (k is divisor of N)

FQ[%, Jl ] ≤ kN.

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

Macroscopic superpositions (e.g, GHZ states, Dicke states)

FQ[%, Jl ] ∝ N2,

[F. Fröwis, W. Dür, New J. Phys. 14 093039 (2012).]



The quantum Fisher information vs. entanglement
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Let us use the Cramér-Rao bound
For separable states

(∆θ)2 ≥ 1
N
, l = x , y , z.

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

For states with at most k -particle entanglement (k is divisor of N)

(∆θ)2 ≥ 1
kN

.

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

Macroscopic superpositions (e.g, GHZ states, Dicke states)

(∆θ)2 ∝ 1
N2 ,

[F. Fröwis, W. Dür, New J. Phys. 14 093039 (2012).]



Noisy metrology: Simple example
A particle with a state %1 passes trough a map that turns its
internal state to the fully mixed state with some probability p as

εp(%1) = (1− p)%1 + p1

2 .

This map acts in parallel on all the N particles

ε⊗N
p (%) =

N∑
n=0

pn%n,

where the state obtained after n particles decohered into the
completely mixed state is

%n = 1
N!

∑
k

Πk

[(
1

2

)⊗n ⊗ Tr1,2,...,n(%)
]

Π†k .

The summation is over all permutations Πk . The probabilities are

pn =

(
N
n

)
pn(1− p)(N−n).



Noisy metrology: Simple example II

Rewriting it

ε⊗N
p (%) =

N∑
n=0

pn
1

N!

∑
k

Πk

[(
1

2

)⊗n ⊗ Tr1,2,...,n(%)
]

Π†k .

For the noisy state

(∆Jx )2 ≥
∑

n

pn(∆Jx )2
%n
≥
∑

n

pn
n
4 = pN

4 .

Hence, for the precision shot-noise scaling follows

(∆θ)2 =
(∆Jx )2

〈Jz〉2
≥

pN
4

N2

4

∝ 1
N
.



Noisy metrology: General treatment

In the most general case, uncorrelated single particle noise leads
to shot-noise scaling after some particle number.

Figure from
[R. Demkowicz-Dobrzański, J. Kołodyński, M. Guţă, Nature Comm. 2012.]

Correlated noise is different.
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Summary
We reviewed quantum metrology from a quantum information
point of view.

See:

Géza Tóth and Iagoba Apellaniz,

Quantum metrology from a quantum information science perspective„

J. Phys. A: Math. Theor. 47, 424006 (2014),
special issue "50 years of Bell’s theorem"

(open access).

THANK YOU FOR YOUR ATTENTION!

https://arxiv.org/abs/arxiv:1405.4878
https://arxiv.org/abs/arxiv:1405.4878
https://arxiv.org/abs/arxiv:1405.4878
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