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o Motivation
@ Why is quantum metrology interesting?



Why is quantum metrology interesting?

@ Recent technological development has made it possible to realize
large coherent quantum system, i.e., in cold gases.

@ Can such quantum systems outperform classical systems?

@ The problem can be understood better based on entanglement
theory.



9 Simple examples of quantum metrology
@ Magnetometry with the fully polarized state



Estimating the angle of a clock arm

@ Classical case: arbitrary precision ("in principle").



Magnetometry with the fully polarized state

@ Let us see the quantum case.
@ N spin-1/2 particles, all fully polarized in the z direction.

@ Magtetic field B points to the y direction.

@ Note the uncertainty ellipses. Afg, is the minimal angle difference
we can measure.



Magnetometry with the fully polarized state Il

@ Collective angular momentum components
N
n=1

for I = x,y, z, where j,(”) are single particle operators.

@ Dynamics
—idy0
Upg=e 7,

where h = 1, and he angle 6 is
0 = ~Bt,

where ~ is the gyromagnetic ratio, and t is the time.



Magnetometry with the fully polarized state IV

@ Measure an operator M to get the estimate 6.

@ The precision is given by the error propagation formula

- T | tana=0,(M)l,_,
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4
A 4



Magnetometry with the fully polarized state V

@ We measure the operator N

M = Jx. , ‘:..,;\ A‘s.,“

@ Expectation value and variance
(M)(0) = (Jz)sin(0) + (Jx) cos(6),
(AMZ(0) = (Ady)?cos?(h) + (AJ)?sin?(6)
+ (3(xdz + Jzdy) — (i) (Jz)) sin(26).

@ Using (Jx) =0, in the  — 0O limit

. (MR (AP 1
(B0 = e = (2 ~ N




Magnetometry with the fully polarized state Il

@ ltis not like a classical clock arm, we have a nonzero uncertainty

;
(AG)? = N



9 Simple examples of quantum metrology

@ Magnetometry with the spin-squeezed state



Magnetometry with the spin-squeezed state

@ We can increase the precision by spin squeezing

fully polarized state (fp) spin-squeezed state (sq)
Adg, and Absq are the minimal angle difference we can measure.

We can reach

(AF)? <

2=



9 Simple examples of quantum metrology

@ Metrology with the GHZ state



Metrology with the GHZ state

@ Greenberger-Horne-Zeilinger (GHZ) state

(GHZy) = (|0)°N + [1)°M),

@ Unitary '
Uy = e W0

@ Dynamics

IGHZ)(6) = 15(10)°N + & ™M [1)=M),



Metrology with the GHZ state I

@ We measure
M=o,

which is the parity in the x-basis.

@ Expectation value and variance

(M) = cos(N®), (AM)? = sin?(N9).

@ For 0 = 0, the precision is

AM)?
(807 = e =

[ e.g., photons: D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger,
Phys. Rev. Lett. 82, 1345 (1999);

ions: C. Sackett et al., Nature 404, 256 (2000). ]



Metrology with the GHZ state lll

@ We reached the Heisenberg-limit

1
(AG)? = N

@ The fully polarized state reached only the shot-noise limit

1

(A0)* = 1.



9 Simple examples of quantum metrology

@ Dicke states



Dicke states

@ Symmetric Dicke states with (J,) = 0 (simply “Dicke states” in the
following) are defined as

o0 ()

@ E.g., for four qubits they look like
1
V6

=

> P (10092 @ 1))
k

|Dy) = (/0011) +10101) +-{1001) + |0110) + [1010) 4 [1100)) .

[photons: Kiesel, Schmid, GT, Solano, Weinfurter, PRL 2007;
Prevedel, Cronenberg, Tame, Paternostro, Walther, Kim, Zeilinger, PRL 2007;
Wieczorek, Krischek, Kiesel, Michelberger, GT, and Weinfurter, PRL 2009]

[cold atoms: Liicke et al., Science 2011; Hamley et al., Science 2011; C. Gross et al.,
Nature 2011]



Metrology with Dicke states

@ For our symmetric Dicke state

(J)y=0,l=x,y,z, (J2)=0, (J2)= (Jﬁ) = large.

@ Linear metrology
U = exp(—iJy9).

@ Measure (J?) to estimate . (We cannot measure first moments,
since they are zero.)

Uncertainty
ellipse



Metrology with Dicke states

@ Dicke states are more robust to noise than GHZ states.

@ Dicke states can also reach the Heisenberg-scaling like GHZ
states.

[Metrology with cold gases: B. Lucke, M Scherer, J. Kruse, L. Pezze, F.
Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi,
C. Klempt, Science 2011.]

[Metrology with photons: R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P.
Hyllus, L. Pezze, A. Smerzi, PRL 2011.]



9 Simple examples of quantum metrology

@ Singlet states



Metrology with the singlet state

@ For our singlet state

(=0, (J)=0, I=xy,2,

@ Invariant under the actions of homogeneous magnetic fields, i.e.,
operations of the type exp(—iJz0).

@ Sensitive to gradients.

@ We do not need to measure the homogeneous field, if we want to
estimate the gradient.

[ N. Behbood et al., Phys. Rev. Lett. 113, 093601 (2014), covered in Scientific American

"Quantum Entanglement Creates New State of Matter"; |. Urizar-Lanz et al., PRA 2013.]



e Entanglement theory
@ Multipartite entanglement



Entanglement

A state is if it can be written as

S e ®o? ®...®0¢".
k

If a state is not separable then it is entangled (Werner, 1989).




k-producibility/k-entanglement

A pure state is if it can be written as
[®) = |®1) ® |92) ® |03) @ |D4)....
where |®)) are states of at most k qubits.

A mixed state is k-producible, if it is a mixture of k-producible pure
states.
[ e.g., Gihne, GT, NJP 2005. ]

@ If a state is not k-producible, then it is at least (k + 1)-particle
entangled.

00000000 000000000
2-entangled 3-entangled



k-producibility/k-entanglement I

2-producible

Separable

(N-1)-producible

N-producible



e Entanglement theory

@ The spin-squeezing criterion



The standard spin-squeezing criterion

Spin squeezing criteria for entanglement detection

If £€2 < 1 then the state is entangled.
[Serensen, Duan, Cirac, Zoller, Nature (2001).]

@ States detected are like this:

Variance of J_is small

J, is large <Z
y

X



Multipartite entanglement in spin squeezing

@ Larger and larger multipartite entanglement is needed to larger
and larger squeezing ("extreme spin squeezing").

0.5

04r1 separable

0 0.2 0.4 0.6 0.8 1
<Jz> /Jmax

@ N =100 spin-1/2 particles, Jnax = N/2.

[Serensen and Mglmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test:
Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).]



Generalized spin squeezing criteria

for Dicke states

@ The full set of entanglement criteria with collective observables
has been obtained.

@ One of these criteria is the following

(J2) + ()< (N—1)(Ad)? + 4.

@ It detects entanglement close to Dicke states.

[GT, C. Knapp, O. Gihne, and H.J. Briegel, PRL 99, 250405 (2007)]



Multipartite entanglement detection around Dicke

states

@ Generalized spin squeezing inequality. BEC, 8000 particles.
28-particle entanglement is detected.

‘ (C) 400

(a)
-

separable

0.4 0.6
T 1920

0 U2, = U2 + U2 and Jmax = N/2.

[ Llcke, Peise, G. Vitagliano, J. Arlt, L. Santos, G. T6th, and C. Klempt, Phys. Rev. Lett. 112,
155304 (2014), also in Synopsys in physics.aps.org. ]



Generalized spin squeezing criteria

for singlet states

@ As we have said, the full set of entanglement criteria with
collective observables has been obtained.

@ Another one of these criteria is the following

(AJ)? + (AJy)? + (AJ)?> &

@ It detects entanglement close to singlet states.

[GT, C. Knapp, O. Gihne, and H.J. Briegel, PRL 99, 250405 (2007)]



@ For separable states of N spin-j particles

2 _ (AP +(Ady)? + (Ad:)
singlet — Nj

>1.
@ For the singlet

(A‘JX)2 + (AJ}’)Q + (AJZ)2 =0, gszinglet =0.
@ Number of particles entangled with the rest

Ne > N(1 - §§inglet)'

[ GT and M. W. Mitchell, New J. Phys 2010. ]
[ N. Behbood et al., Phys. Rev. Lett. 113, 093601 (2014), covered in Scientific American
"Quantum Entanglement Creates New State of Matter". ]



Our experience so far

@ We looked at various setups.
@ We find that better precision needs more entanglement.
@ Question: Is this general?

@ Answer: Yes.



0 Quantum metrology using the quantum Fisher information
@ Quantum Fisher information



Quantum metrology

@ Fundamental task in metrology

0 U (6)=exp(—id0) op

@ We have to estimate 6 in the dynamics

U = exp(—IiA¥b).



Precision of parameter estimation (slide repeated)
@ Measure an operator M to get the estimate 6.

@ The precision is given by the error propagation formula

- T | tana=0,(M)l,_,

» 0

4
A 4



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

For every M
1

FQ[Q7 A] 7
where Fg[o, A] is the quantum Fisher information.

(A6)?y >

o

@ The bound is even more general, includes any estimation strategy,
even POVM’s.

@ The quantum Fisher information is
(A = A)? 2
Folo,Al=2) ~———|(k|A|D]|%,
alo Al Ek/ P [ (k|A[])]

where o = 3", Axlk)(K].



The optimal measurement

An optimal measurement can be carried out if we measure in the
eigenbasis of the symmetric logarithmic derivative L given as

LZZ

where o = 3", A«lk)(K].

Ik (I Ck|A[T),

@ L is defined by

o5 — T(Log + opL).

@ Unitary dynamics with the Hamiltonian A
L%Q = I(Q@A Agg).

@ Hence, the formula above can be obtained.

@ Relation to the QFI: Fg[o, A] = Tr(L2p).



Multi-parameter estimation

The Cramér-Rao bound for the multi-parameter case is

C-F'>o0.

@ C is now the covariance matrix with elements

Cmn = <9m9n> - <9m> <0ﬂ>'

@ F is the Fisher matrix

_ /\/)2

A
Fom = Folo Am. A =23 S Kl A1) 1A ).
k.l

where o = >, A¢|k) (k|



Quantum Fisher information and the fidelity

The quantum Fisher information appears in the Taylor expansion of Fg
Fa(o. 00) = 1 — 67 P22 1+ O(6°),

where

09 = exp(—IiAb)oexp(+IiAb).

@ Bures fidelity

2
FB(m,gz):Tr( mwa) .

@ Clearly,
0 < Fg(o1,02) < 1.

The fidelity is 1 only if o1 = 0o.



Convexity of the quantum Fisher information

@ For pure states, it equals four times the variance,

FallV), Al = 4(AA)?y,.

@ For mixed states, it is convex

Falo, Al <Y pkFallVi), Al,
k

where
0= PrlVi)(Wkl.
K



0 Quantum metrology using the quantum Fisher information

@ Quantum Fisher information in linear interferometers



Magnetometry with a

@ The Hamiltonian A is defined as
N
A=J = Zjl(”), le{x,y,z}.
n=1

There are no interaction terms.

@ The dynamics rotates all spins in the same way.



The quantum Fisher information vs. entanglement

@ For separable states
Falo. ] <N, I=xy,z

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Glihne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

@ For states with at most k-particle entanglement (k is divisor of N)
FO[Qv J/] < KN.

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

@ Macroscopic superpositions (e.g, GHZ states, Dicke states)

Fale, Ji] o< N2,

[F. Frowis, W. Dir, New J. Phys. 14 093039 (2012).]



The quantum Fisher information vs. entanglement

5 spin-1/2 particles

F
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2-entanglement



Let us use the Cramér-Rao bound

@ For separable states
(AF)? > 1
iy N7
[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Glihne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

I=x,y,z.

@ For states with at most k-particle entanglement (k is divisor of N)

1
AP > —.
Y
[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

@ Macroscopic superpositions (e.g, GHZ states, Dicke states)

1
(A9)2 X W7

[F. Frowis, W. Diir, New J. Phys. 14 093039 (2012).]



Noisy metrology: Simple example

@ A particle with a state o1 passes trough a map that turns its
internal state to the fully mixed state with some probability p as

ep(o1) = (1 = p)o1 + p3.

@ This map acts in parallel on all the N particles

N
6/%W(Q) = Z Pnon,
n=0

where the state obtained after n particles decohered into the
completely mixed state is

®
on =1 > Mk [(%) "® Tf1,2,...,n(9)} nj.
k
The summation is over all permutations lM,. The probabilities are

Pn = (g)p”ﬁ —p)N=n.



Noisy metrology: Simple example I

@ Rewriting it

@ Hence, for the precision shot-noise scaling follows

(B2 G 1

2 = N2
(2~

(D6)? =




Noisy metrology: General treatment

@ In the most general case, uncorrelated single particle noise leads
to shot-noise scaling after some particle number.

1.00f*

0.50

Figure from
[R. Demkowicz-Dobrzanski, J. Kotodynski, M. Guta, Nature Comm. 2012.]

@ Correlated noise is different.
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60, 345 (2015).

@ L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Non-classical states of atomic ensembles: fundamentals
and applications in quantum metrology, arXiv:1609.01609.



@ We reviewed quantum metrology from a quantum information
point of view.
See:
Géza Téth and lagoba Apellaniz,
Quantum metrology from a quantum information science perspective,

J. Phys. A: Math. Theor. 47, 424006 (2014),
special issue "50 years of Bell’s theorem"
(open access).
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