Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles Quantum 7, 914 (2023)

G. Vitagliano^{1,2}, M. Fadel^{3,4}, I. Apellaniz^{2,5,6}, M. Kleinmann^{7,2}, B. Lücke⁸, C. Klempt^{8,9}, G. Tóth^{2,5,10,11,12}

 ¹IQOQI, Wien, Austria, ²University of the Basque Country UPV/EHU, Bilbao, Spain ³Department of Physics, ETH Zürich, Zürich, Switzerland ⁴Department of Physics, University of Basel, Basel, Switzerland ⁵EHU Quantum Center, University of the Basque Country UPV/EHU, Spain ⁶University of Mondragon, Spain, ⁷University of Siegen, Germany ⁸Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany ⁹Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) ¹⁰Donostia International Physics Center (DIPC), San Sebastián, Spain ¹¹IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ¹²Wigner Research Centre for Physics. Budapest, Hungary

Motivation

Why entanglement is important?

Detecting bipartite entanglement of Dicke states

- Bipartite entanglement from multipartite entanglement in BEC
- Creating Dicke states in BEC
- Entanglement detection in Dicke states
- Our criteria work under realistic conditions

Why multipartite entanglement is important?

 Many experiments are aiming to create entangled states with many atoms.

- Full tomography is not possible, we still have to say something meaningful.
- Only collective quantities can be measured.
- Thus, entanglement detection seems to be a good idea.

• In many cases, we need to detect bipartite entanglement.

Motivatior

• Why entanglement is important?

Detecting bipartite entanglement of Dicke states

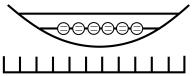
- Bipartite entanglement from multipartite entanglement in BEC
- Creating Dicke states in BEC
- Entanglement detection in Dicke states
- Our criteria work under realistic conditions

Bipartite entanglement from bosonic multipartite entanglement

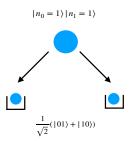
- In the BEC, "all the particles are at the same place."
- In the usual formulation, entanglement is between spatially separated parties.
- Is multipartite entanglement within a BEC useful/real?
- Answer: yes!

Bipartite entanglement from bosonic multipartite entanglement II

Dilute cloud argument

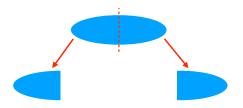


[See, e.g., P. Hyllus, L. Pezzé, A Smerzi and GT, PRA 86, 012337 (2012)]



Bipartite entanglement from bosonic multipartite entanglement III

- After splitting it into two, we have bipartite entanglement if we had before multipartite entanglement.
- The splitting does not generate entanglement, if we consider projecting to a fixed particle number.



[N. Killoran, M. Cramer, and M. B. Plenio, PRL 112, 150501 (2014).]

Motivation

Why entanglement is important?

Detecting bipartite entanglement of Dicke states

- Bipartite entanglement from multipartite entanglement in BEC
- Creating Dicke states in BEC
- Entanglement detection in Dicke states
- Our criteria work under realistic conditions

Experiment in the group of Carsten Klempt at the University of Hannover

- Rubidium BEC, spin-1 atoms.
- Initially all atoms in the spin state $|j_z = 0\rangle$.
- Dynamics $H = a_0^2 a_{+1}^{\dagger} a_{-1}^{\dagger} + (a_0^{\dagger})^2 a_{+1} a_{-1}.$ Transling from mode 0 to the mode + 1 and -1

Tunneling from mode 0 to the mode +1 and -1.

• Understanding the tunneling process

$$\begin{aligned} |j_z = 0\rangle |j_z = 0\rangle &\to \frac{1}{\sqrt{2}} (|j_z = +1\rangle |j_z = -1\rangle + |j_z = -1\rangle |j_z = +1\rangle) \\ &= \text{Dicke state of 2 particles.} \end{aligned}$$

Experiment in the group of Carsten Klempt at the University of Hannover II

After some time, we have a state

$$|n_0, n_{-1}, n_{+1}\rangle = |N - 2n, n, n\rangle.$$

• That is, N - 2n particles remained in the $|j_z = 0\rangle$ state, while 2n particles form a symmetric Dicke state given as

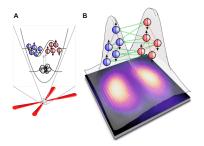
$$|D_N\rangle = {\binom{N}{\frac{N}{2}}}^{-\frac{1}{2}} \sum_k \mathcal{P}_k \left(|0\rangle^{\otimes \frac{N}{2}} \otimes |1\rangle^{\otimes \frac{N}{2}}\right),$$

where we use $|0\rangle$ and $|1\rangle$ instead of $|j_z = -1\rangle$ and $|j_z = +1\rangle$.

 Half of the atoms in state |0>, half of the atoms in state |1> + symmetrization.

Experiment in the group of Carsten Klempt at the University of Hannover III

- Important: first excited spatial mode of the trap was used, not the ground state mode.
- It has two "bumps" rather than one, hence they had a split Dicke state.



[K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes, Science 360, 416 (2018).]

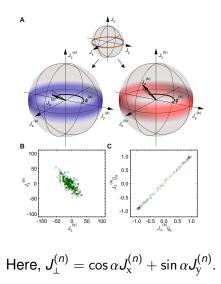
For the Dicke state

$$egin{aligned} &(\Delta(J_{\mathrm{x}}^{a}-J_{\mathrm{x}}^{b}))^{2}pprox0,\ &(\Delta(J_{\mathrm{y}}^{a}-J_{\mathrm{y}}^{b}))^{2}pprox0,\ &(\Delta J_{\mathrm{z}})^{2}=0. \end{aligned}$$

 Measurement results on well "b" can be predicted from measurements on "a"

$$egin{array}{rcl} J_{\mathrm{x}}^{b} &pprox & J_{\mathrm{x}}^{a}, \ J_{\mathrm{y}}^{b} &pprox & J_{\mathrm{y}}^{a}, \ J_{\mathrm{z}}^{b} &=& -J_{\mathrm{z}}^{a}. \end{array}$$

Correlations for Dicke states - experimental results



Experiment in K. Lange et al., Science 334, 773–776 (2011).

Motivation

Why entanglement is important?

Detecting bipartite entanglement of Dicke states

- Bipartite entanglement from multipartite entanglement in BEC
- Creating Dicke states in BEC
- Entanglement detection in Dicke states
- Our criteria work under realistic conditions

Number-phase-like uncertainty

• We start from the sum of two Heisenberg uncertainty relations

$$(\Delta J_z)^2[(\Delta J_x)^2 + (\Delta J_y)^2] \ge \frac{1}{4}(\langle J_x \rangle^2 + \langle J_y \rangle^2).$$

Then,

$$(\Delta J_z)^2[(\Delta J_x)^2 + (\Delta J_y)^2] + \frac{1}{4}[(\Delta J_x)^2 + (\Delta J_y)^2] \ge \frac{1}{4}(\langle J_x^2 \rangle + \langle J_y^2 \rangle).$$

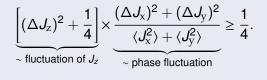
• Simple algebra yields

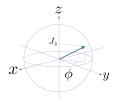
$$\left[(\Delta J_z)^2 + rac{1}{4}
ight] imes rac{(\Delta J_x)^2 + (\Delta J_y)^2}{\langle J_x^2
angle + \langle J_y^2
angle} \geq rac{1}{4}.$$

• Note that $\langle J_x^2 \rangle$ appears, not $\langle J_x \rangle^2$.

Number-phase-like uncertainty II

Uncertainty relation





Handwaving description:

 J_z and ϕ cannot be defined both with high accuracy.

• Let us introduce the normalized variables

$$\mathcal{J}_m^n = \frac{J_m^n}{\sqrt{j_n(j_n+1)}},$$

where m = x, y and n = a, b (i.e., left well, right well), the total spin is $j_n = \frac{N_n}{2}$,

Normalized variables
$$\rightarrow$$
 resistance to experimental imperfections.

Our uncertainty relation is now

$$\left[(\Delta J_z)^2 + \frac{1}{4} \right] \left[(\Delta \mathcal{J}_x)^2 + (\Delta \mathcal{J}_y)^2 \right] \ge \frac{1}{4} \left\langle \mathcal{J}_x^2 + \mathcal{J}_y^2 \right\rangle.$$

The two-well entanglement criterion

Suggestion of the experimentalists: we need a product criterion, since it is good for realistic noise.

Main result I

For separable states,

$$\left[(\Delta J_z)^2 + \frac{1}{4} \right] \left[(\Delta \mathcal{J}_x^-)^2 + (\Delta \mathcal{J}_y^-)^2 \right] \ge \frac{1}{16} \left\langle \mathcal{J}_x^2 + \mathcal{J}_y^2 \right\rangle^2$$

holds.

Here,

$$J_z = J_z^a + J_z^b,$$

$$\mathcal{J}_m^- = \mathcal{J}_m^a - \mathcal{J}_m^b$$

for m = x, y.

Main result II

For states with a hidden state model,

$$\left[(\Delta J_z)^2 + \frac{1}{4} \right] \left[(\Delta \mathcal{J}_x^-)^2 + (\Delta \mathcal{J}_y^-)^2 \right] \ge \frac{1}{4} \left\langle (\mathcal{J}_x^a)^2 + (\mathcal{J}_y^a)^2 \right\rangle^2$$

holds.

Any state violating the inequality cannot be described by a hidden state model, i.e., the state is *steerable*.

Motivation

Why entanglement is important?

Detecting bipartite entanglement of Dicke states

- Bipartite entanglement from multipartite entanglement in BEC
- Creating Dicke states in BEC
- Entanglement detection in Dicke states
- Our criteria work under realistic conditions

Problem 1: Varying particle number

- The experiment is repeated many times. Each time we find a somewhat different particle number.
- Postselecting for a given particle number is not feasible.
- Consider a density matrix

$$arrho = \sum_{j_{\mathrm{a}}, j_{\mathrm{b}}} \mathcal{Q}_{j_{\mathrm{a}}, j_{\mathrm{b}}} arrho_{j_{\mathrm{a}}, j_{\mathrm{b}}},$$

where ρ_{j_a, j_b} are states with $2j_a$ and $2j_b$ particles in the two wells, Q_{j_a, j_b} are probabilities.

• ρ is entangled iff at least one of the ρ_{i_a, j_b} is entangled.

Problem 1: Varying particle number II

- Even if we have a constant total particle number, the ensemble will not be evenly split.
- Probability distribution for having N/2 + x particles

$$p_x = 2^{-N} \binom{N}{N/2 + x}.$$

$$\operatorname{var}(N_{\mathrm{a}}) = \operatorname{var}(x) = \langle x^2 \rangle = \frac{N}{4.}$$

Collective variance

Variance

$$[\Delta(J_l^a - J_l^b)]^2 \approx \sum_{x=-N/2}^{N/2} p_x\left(\frac{N}{8} + \frac{1}{2}x^2\right) = \frac{N}{8} + \frac{1}{2}\operatorname{var}(x) = \frac{N}{4}.$$

Twice as large due to the unequal splitting.

Problem 1: Varying particle number III

• Let use the normalized quantity mentioned before

$$\mathcal{J}_{l}^{-} = \frac{1}{\sqrt{j_{a}(j_{a}+1)}} J_{l}^{a} - \frac{1}{\sqrt{j_{b}(j_{b}+1)}} J_{l}^{b}$$

for I = x, y.

• For the variance of \mathcal{J}_l we obtain

$$(\Delta \mathcal{J}_I^-)^2 \approx \frac{N}{N^2/2 + 4N - 2x^2}$$

After splitting $|x| \leq \sqrt{N/4}$.

We have

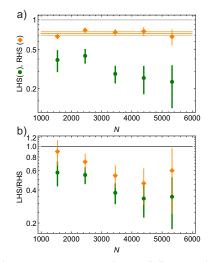
$$(\Delta \mathcal{J}_I^-)^2 \approx \frac{2}{N}.$$

$(\Delta \mathcal{J}_l)^2$ is not sensitive to the fluctuation of *x* if *N* is large.

Problem 2: States are not always symmertic in a BEC of two-state atoms

- Ideally, the BEC is in a single spatial mode.
- The state of an ensemble of the two-state atoms must be symmetric.
- In practice, the BEC is not in a single spatial mode, so there is no perfect symmetry.
- Our criterion must hadle this.

Violation of the criterion: entanglement is detected II



LHS/RHS for (top) our present work, and (bottom) for Science 2018.

Collaborators on entanglement conditions for double-well Dicke states



C. Klempt, I. Kruse, J. Peise, K. Lange, B. Lücke

G. Vitagliano

I. Apellaniz

IQOQI, Wien

Bilbao (G.T.)

M. Fadel

M. Kleinmann

Hannover

ETH Zürich, Basel U. of Siegen

Other similar experiments at the same time in Science in 2018

Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates,

M. Fadel, T. Zibold, B. Décamps, P. Treutlein

Spatially distributed multipartite entanglement enables EPR steering of atomic clouds,

P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner, M. K. Oberthaler

Summary

- Detection of bipartite entanglement and EPR steering close to Dicke states. It works also for split spin-squeezed states.
- Non-symmetric states within the wells and a varying particle number can also be handled.

G. Vitagliano, I. Apellaniz, M. Fadel, M. Kleinmann, B. Lücke, C. Klempt, and G. Tóth, Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles, Quantum 7, 914 (2023)

K. Lange et al., Science 334, 773-776 (2011)

THANK YOU FOR YOUR ATTENTION! www.gtoth.eu

