Uncertainty relations with the variance and the quantum Fisher information

Géza Tóth^{1,2,3,4} and Florian Fröwis⁵

 ¹Theoretical Physics and EHU Quantum Center, University of the Basque Country (UPV/EHU), Bilbao, Spain
 ²Donostia International Physics Center (DIPC), San Sebastián, Spain
 ³IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ⁴Wigner Research Centre for Physics, Budapest, Hungary
 ⁵Group of Applied Physics, University of Geneva, CH-1211 Geneva, Switzerland

RDM2022, 17 June 2022

Motivation

• How can we improve uncertainty relations?

2 Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

How can we improve uncertainty relations?

• There are many approaches to improve uncertainty relations.

• We show a method that replaces the variance with the quantum Fisher information in some well known uncertainty relations.

We use convex/concave roofs over the decompositions of the density matrix.

Motivatio

• How can we improve uncertainty relations?

Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

Quantum metrology

Fundamental task in metrology

• We have to estimate θ in the dynamics

$$U = \exp(-iA\theta).$$

• Cramér-Rao bound on the precision of parameter estimation

$$(\Delta \theta)^2 \geq rac{1}{mF_Q[\varrho, A]},$$

where $F_Q[\varrho, A]$ is the quantum Fisher information, and *m* is the number of independent repetitions.

• The quantum Fisher information is

$$F_{Q}[\varrho, A] = 2\sum_{k,l} \frac{(\lambda_{k} - \lambda_{l})^{2}}{\lambda_{k} + \lambda_{l}} |\langle k|A|l \rangle|^{2},$$

where $\rho = \sum_{k} \lambda_{k} |k\rangle \langle k|$.

The quantum Fisher information is the convex roof of the variance

$$F_{Q}[\varrho, A] = 4 \min_{\{p_{k}, |\psi_{k}\rangle\}} \sum_{k} p_{k} (\Delta A)^{2}_{\psi_{k}},$$

where

$$\varrho = \sum_{\mathbf{k}} \mathbf{p}_{\mathbf{k}} |\psi_{\mathbf{k}}\rangle \langle \psi_{\mathbf{k}} |.$$

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013); GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

Convex roof over purifications.

[R. Demkowicz-Dobrzański, J. Kołodyński, M. Guţă, Nature Comm. 2012.]

The variance is the concave roof of itself

$$(\Delta A)^2_{\ \varrho} = \max_{\{p_k, |\psi_k\rangle\}} \sum_k p_k (\Delta A)^2_{\ \psi_k},$$

where

$$\varrho = \sum_{\mathbf{k}} \mathbf{p}_{\mathbf{k}} |\psi_{\mathbf{k}}\rangle \langle \psi_{\mathbf{k}} |.$$

GT, D. Petz, Phys. Rev. A 87, 032324 (2013); GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014).

A single relation for the QFI and the variance

The previous statements can be concisely reformulated as follows. For any decomposition $\{p_k, |\psi_k\rangle\}$ of the density matrix ρ we have

$$\frac{1}{4}F_{Q}[\varrho,A] \leq \sum_{k} p_{k}(\Delta A)^{2}_{\psi_{k}} \leq (\Delta A)^{2}_{\varrho},$$

where the upper and the lower bounds are both tight.

Note that

$$F_Q[\varrho, A] \leq 4(\Delta A)^2_{\ \varrho},$$

where we have an equality for pure states.

• The QFI appears as a "pair" of variance.

The quantum Fisher information vs. entanglement

• For separable states of *N* spin-1/2 particles

$$F_Q[\varrho, J_l] \leq N, \qquad l = x, y, z, \qquad J_l = \sum_{n=1}^N j_l^{(n)}.$$

...

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi, Phys. Rev. A 82, 012337 (2010)]

• For states with at most k-particle entanglement (k is divisor of N)

 $F_Q[\varrho, J_l] \leq kN.$

[P. Hyllus *et al.*, Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322 (2012)]. \rightarrow Many experiments with cold gases and photons.

In general

$$F_Q[\varrho, J_l] \leq N^2.$$

The quantum Fisher information vs. entanglement II

5 spin-1/2 particles

At least

5-entanglement

4-entanglement

3-entanglement

2-entanglement

Motivatio

• How can we improve uncertainty relations?

Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

The Robertson-Schrödinger inequality is defined as

$$(\Delta A)^2_{\ \varrho} (\Delta B)^2_{\ \varrho} \geq \frac{1}{4} |L_{\varrho}|^2,$$

where the lower bound is given by

$$L_{arrho} = \sqrt{|\langle \{m{A},m{B}\}
angle_arrho} - 2\langlem{A}
angle_arrho \langlem{B}
angle_arrho|^2 + |\langlem{C}
angle_arrho|^2,$$

 $\{A, B\} = AB + BA$ is the anticommutator, and we used the definition

$$C = i[A, B].$$

Important: L_{ϱ} is neither convex nor concave in ϱ .

The Heisenberg inequality is defined as

$$(\Delta A)^2_{\ \varrho} (\Delta B)^2_{\ \varrho} \geq \frac{1}{4} |\langle C \rangle_{\varrho}|^2,$$

where we used the definition

$$C = i[A, B].$$

We have two inequalities

$$(\Delta A)^2_{\ \varrho} (\Delta B)^2_{\ \varrho} \geq \frac{1}{4} |L_{\varrho}|^2 \geq \frac{1}{4} |\langle C \rangle_{\varrho}|^2.$$

The Heisenberg uncertainty can be saturated only if

$$|L_{\varrho}| = |\langle \boldsymbol{C} \rangle_{\varrho}|.$$

Motivatior

• How can we improve uncertainty relations?

2 Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

Robertson-Schrödinger inequality for ϱ_k

• Consider a decomposition to mixed states

$$\varrho=\sum_{k}p_{k}\varrho_{k}.$$

For such a decomposition, for all *ρ_k* the Robertson-Schrödinger inequality holds

$$(\Delta A)^2_{\ \varrho_k} (\Delta B)^2_{\ \varrho_k} \geq \frac{1}{4} |L_{\varrho_k}|^2.$$

Let us consider the inequality

$$\left(\sum_{k} p_{k} a_{k}\right) \left(\sum_{k} p_{k} b_{k}\right) \geq \left(\sum_{k} p_{k} \sqrt{a_{k} b_{k}}\right)^{2},$$

where $a_k, b_k \ge 0$.

Uncertainty with the variance and the QFI

Hence, we arrive at

$$\left[\sum_{k} p_{k}(\Delta A)^{2}_{\varrho_{k}}\right] \left[\sum_{k} p_{k}(\Delta B)^{2}_{\varrho_{k}}\right] \geq \frac{1}{4} \left[\sum_{k} p_{k} L_{\varrho_{k}}\right]^{2}.$$

• We can choose the decomposition such that

$$\sum_{k} p_{k} (\Delta B)^{2}_{\varrho_{k}} = F_{Q}[\varrho, B]/4.$$

Due to the concavity of the variance we also know that

$$\sum_{k} p_k (\Delta A)^2_{\ arrho_k} \leq (\Delta A)^2.$$

Hence, it follows that

$$(\Delta A)^2{}_{\varrho}F_Q[\varrho,B] \ge \left(\sum_k p_k L_{\varrho_k}\right)^2$$

In order to use the previous inequality, we need to know the decomposition {*p_k*, *ρ_k*} that minimizes ∑_k *p_k*(Δ*B*)²<sub>*ρ_k*.
</sub>

Uncertainty with the variance and the QFI II

We can have a inequality where we do not need to know that decomposition

$$(\Delta A)^2_{\ \varrho} F_Q[\varrho, B] \ge \left(\min_{\{p_k, \varrho_k\}} \sum_k p_k L_{\varrho_k}\right)^2.$$

- On the right-hand side, the bound is defined based on a convex roof.
- It can be shown that we can move to pure state decompositions.
- We know that

$$L_{\psi_k} \ge |\langle \boldsymbol{C}
angle_{\psi_k}|$$

holds.

Uncertainty with the variance and the QFI III

• Then, we can obtain the inequality

$$(\Delta A)^2{}_{\varrho}F_{Q}[\varrho,B] \ge \left(\min_{\{p_k,|\psi_k\rangle\}}\sum_k p_k|\langle C\rangle_{\psi_k}|\right)^2,$$

Using

$$\sum_{k} p_{k} |\langle \boldsymbol{C} \rangle_{\psi_{k}}| \geq \left| \sum_{k} p_{k} \langle \boldsymbol{C} \rangle_{\psi_{k}} \right| \equiv |\langle \boldsymbol{C} \rangle_{\varrho}|,$$

we arrive at the improved Heisenberg-Robertson uncertainty

$$(\Delta A)^2{}_{\varrho}F_Q[\varrho,B] \ge |\langle C \rangle_{\varrho}|^2.$$

Uncertainty with the variance and the QFI IV

• The Heisenberg uncertainty

$$(\Delta A)^2_{\varrho} (\Delta B)^2_{\varrho} \geq \frac{1}{4} |\langle i[A, B] \rangle_{\varrho}|^2.$$

The improved Heisenberg uncertinty

 $(\Delta A)^{2}{}_{\varrho}F_{Q}[\varrho,B] \geq |\langle i[A,B]\rangle_{\varrho}|^{2}.$

It has been derived originally with a different method in

F. Fröwis, R. Schmied, and N. Gisin, Phys. Rev. A 92, 012102 (2015).

Conditions for saturation

• Conditions for saturating the relation with the simple bound

$$(\Delta A)^2{}_{\varrho}F_Q[\varrho,B] \ge \left(\min_{\{p_k,\varrho_k\}}\sum_k p_k L_{\varrho_k}\right)^2 \ge |\langle C \rangle_{\varrho}|^2.$$

- We have to have equality on the right-hand side.
- The optimal decomposition can be made with pure components Ψ_k. Then, for all k, l we must have

$$egin{aligned} &rac{1}{2}\langle\{A,B\}
angle_{\psi_k}-\langle A
angle_{\psi_k}\langle B
angle_{\psi_k}=0\ &\ &(\Delta A)^2_{\ \psi_k}\ =\ &(\Delta A)^2_{\ \psi_l},\ &\ &(\Delta B)^2_{\ \psi_k}\ =\ &(\Delta B)^2_{\ \psi_l},\ &\ &|\langle C
angle_{\psi_k}|=|\langle C
angle_{arrho}|, \end{aligned}$$

,

etc.

Motivatior

• How can we improve uncertainty relations?

2 Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

Uncertainty relation based on a concave roof

• For any decomposition $\{p_k, \varrho_k\}$ we have

$$(\Delta A)^2 (\Delta B)^2 \geq rac{1}{4} \left(\sum_k p_k L_{\varrho_k}
ight)^2,$$

where

$$L_arrho = \sqrt{|\langle \{m{A},m{B}
angle_arrho - 2 \langle m{A}
angle_arrho \langle m{B}
angle_arrho |^2 + |\langle m{C}
angle_arrho |^2}.$$

• We can even take a concave roof on the right-hand side

$$(\Delta A)^2_{\ \varrho} (\Delta B)^2_{\ \varrho} \geq rac{1}{4} \left(\max_{\{ p_k, \varrho_k \}} \sum_k p_k L_{\varrho_k} \right)^2.$$

 We prove that for qubits the above inequality is saturated for all states.

Any decomposition leads to a valid bound

• A simple inequality that is valid

$$(\Delta A)^2_{\varrho} (\Delta B)^2_{\varrho} \geq \frac{1}{4} \left(\sum_k \lambda_k L_{|k\rangle} \right)^2,$$

if we have an eigendecompostion

$$\varrho = \sum_{\mathbf{k}} \lambda_{\mathbf{k}} |\mathbf{k}\rangle \langle \mathbf{k}|.$$

• We can even look for concave roof numerically.

Numerical example

• For *d* = 3

$$(\Delta J_x)^2{}_{\varrho}(\Delta J_y)^2{}_{\varrho} \geq rac{1}{4}\left(\max_{\{p_k,\varrho_k\}}\sum_k p_k L_{\varrho_k}\right)^2$$

• Eigenvalues J_x and J_y are -1, 0, +1.

Motivatior

• How can we improve uncertainty relations?

2 Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

Uncertainty relations with a variance and the QFI

 Similar ideas work even for a sum of two variances. For example, for a continuous variable system

$$(\Delta x)^2 + (\Delta p)^2 \ge 1$$

holds, where x and p are the position and momentum operators.

• Hence, for any decompositions of the density matrix it follows that

$$\sum_{k} p_k (\Delta x)^2_{\psi_k} + \sum_{k} p_k (\Delta p)^2_{\psi_k} \geq 1.$$

- For *p* we choose the decomposition that leads to the minimal value for the average variance, i.e., the QFI over four.
- Then, since $\sum_{k} p_{k} (\Delta x)^{2}_{\psi_{k}} \leq (\Delta x)^{2}$ holds, it follows that $(\Delta x)^{2} + \frac{1}{4} F_{Q}[\varrho, p] \geq 1.$

Uncertainty relations with two variances and the QFI

Let us start from the relation for pure states

$$(\Delta J_X)^2 + (\Delta J_Y)^2 + (\Delta J_Z)^2 \ge j,$$

where J_l are the spin components fulfilling

$$J_x^2 + J_y^2 + J_z^2 = j(j+1)\mathbb{1}.$$

Based on similar ideas we arriving at

$$(\Delta J_x)^2 + (\Delta J_y)^2 + \frac{1}{4} \mathcal{F}_Q[\varrho, J_z] \ge j.$$

See parallel publication in

S.-H. Chiew and M. Gessner, Phys. Rev. Research 4, 013076 (2022).

Motivatior

• How can we improve uncertainty relations?

2) Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

Simple observation to prove further relations

• Let us consider a relation

which is true for pure states.

• If $g(\varrho)$ is convex in density matrices, then

$$rac{1}{4}F_Q[arrho,m{A}]\geq g(arrho)$$

holds for mixed states.

- *Proof.* $\frac{1}{4}F_Q[\varrho, A]$ is given as a convex roof of the variance.
- It is the largest convex function that equals (ΔA)²_ρ for all pure states.

Repeating the proof for the two variances and the QFI

• We rewrite the relation with three variances as

$$\underbrace{(\Delta J_{\chi})^{2}}_{\text{variance}} \geq \underbrace{j - (\Delta J_{\chi})^{2} - (\Delta J_{z})^{2}}_{\text{convex in } \varrho},$$

The right-hand side is convex in *ρ* and the left-hand side is a variance.

• Hence,

$$\frac{1}{4}F_Q[\varrho,J_Z] \geq j - (\Delta J_X)^2 - (\Delta J_Y)^2.$$

Motivatior

• How can we improve uncertainty relations?

2 Background

- Quantum Fisher information
- Uncertainty relations

- Uncertainty relations based on a convex roof of the bound
- Uncertainty relations based on a concave roof of the bound
- Several variances and the QFI
- Simple observation to prove further relations
- Metrological usefulness and entanglement conditions

CV systems (for spin systems, the derivation is similar, but longer)

- Consider entanglement detection in two-mode systems with uncertainty relations.
- A well-known entanglement criterion is

$$[\Delta(x_1+x_2)]^2+[\Delta(p_1-p_2)]^2\geq 2.$$

If a quantum state violates it, then it is entangled.

L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000); R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

CV systems II

• For a two-mode state, the following uncertainty relation holds

$$egin{aligned} & [\Delta(x_1+x_2)]^2 + [\Delta(p_1-p_2)]^2 \geq \ & 4/F_Q[arrho,p_1+p_2] + 4/F_Q[arrho,x_1-x_2]. \end{aligned}$$

As a consequence, we know something about metrology with states violating the entanglement condition (details are in the paper).

• Proof. We start from the relations

$$\begin{array}{ll} [\Delta(x_1+x_2)]^2 F_Q[\varrho, \rho_1+\rho_2] & \geq & 4, \\ [\Delta(\rho_1-\rho_2)]^2 F_Q[\varrho, x_1-x_2] & \geq & 4. \end{array}$$

• Then, in both inequalities we divide by the term containing the QFI. Finally, we sum the two resulting inequalities.

Summary

 We showed how to derive new uncertainty relations with the variance and the quantum Fisher information based on simple convexity arguments.

See:

Géza Tóth and Florian Fröwis,

Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices,

Phys. Rev. Research 4, 013075 (2022).

THANK YOU FOR YOUR ATTENTION!

