Entanglement between two spatially separated atomic modes

Entanglement th.: G. Vitagliano ${ }^{1,2}$, I. Apellaniz ${ }^{3,2}$, M. Kleinmann ${ }^{4,2}$, G. Tóth ${ }^{2}$,

Cold gas exp.: K. Lange ${ }^{4}$, J. Peise ${ }^{4}$, B. Lücke ${ }^{4}$, I. Kruse ${ }^{4}$, C. Klempt ${ }^{4}$

${ }^{1}$ IQOQI, Wien, Austria,
${ }^{2}$ University of the Basque Country UPV/EHU, Bilbao, Spain
${ }^{4}$ University of Mondragon, Spain
${ }^{3}$ University of Siegen, Germany
${ }^{5}$ Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany

Workshop on Entanglement in Cold Gases, Austrian Academy of Sciences, Wien, February 2020

Outline

(1) Motivation

- Why entanglement is important?
(2) Spin squeezing and entanglement
- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j=\frac{1}{2}$
(3) Detecting multipartite entanglement of Dicke states
- Dicke state realized with a BEC of two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a double well (recent results)

Why multipartite entanglement is important?

- Many experiments are aiming to create entangled states with many atoms.
- Full tomography is not possible, we still have to say something meaningful.
- Only collective quantities can be measured.
- Thus, entanglement detection seems to be a good idea ...

Outline

(1) Motivation

- Why entanglement is important?
(2) Spin squeezing and entanglement
- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j=\frac{1}{2}$
(3) Detecting multipartite entanglement of Dicke states
- Dicke state realized with a BEC of two-state atoms

4 Detecting bipartite entanglement of Dicke states

- Dicke state in a double well (recent results)

Entanglement

A state is (fully) separable if it can be written as

$$
\sum_{k} p_{k} \varrho_{1}^{(k)} \otimes \varrho_{2}^{(k)} \otimes \ldots \otimes \varrho_{N}^{(k)}
$$

If a state is not separable then it is entangled.

k-producibility/k-entanglement

A pure state is k-producible if it can be written as

$$
|\Phi\rangle=\left|\Phi_{1}\right\rangle \otimes\left|\Phi_{2}\right\rangle \otimes\left|\Phi_{3}\right\rangle \otimes\left|\Phi_{4}\right\rangle \ldots
$$

where $\left|\Phi_{l}\right\rangle$ are states of at most k qubits.
A mixed state is k-producible, if it is a mixture of k-producible pure states.
[e.g., O. Gühne and GT, New J. Phys 2005.]

- If a state is not k-producible, then it is at least $(k+1)$-particle entangled.

Outline

(1) Motivation

- Why entanglement is important?
(2) Spin squeezing and entanglement
- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j=\frac{1}{2}$
(3) Detecting multipartite entanglement of Dicke states
- Dicke state realized with a BEC of two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a double well (recent results)

Many-particle systems for $\mathrm{j}=1 / 2$

- For spin- $\frac{1}{2}$ particles, we can measure the collective angular momentum operators:

$$
J_{l}:=\frac{1}{2} \sum_{k=1}^{N} \sigma_{l}^{(k)},
$$

where $I=x, y, z$ and $\sigma_{I}^{(k)}$ a Pauli spin matrices.

- We measure the expectation values $\left\langle J_{l}\right\rangle$.
- We can also measure the variances

$$
\left(\Delta J_{l}\right)^{2}:=\left\langle J_{l}^{2}\right\rangle-\left\langle J_{l}\right\rangle^{2} .
$$

Outline

(1) Motivation

- Why entanglement is important?

2 Spin squeezing and entanglement

- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j=\frac{1}{2}$
(3) Detecting multipartite entanglement of Dicke states
- Dicke state realized with a BEC of two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a double well (recent results)

The standard spin-squeezing criterion

The spin squeezing criterion for entanglement detection is

$$
\xi_{\mathrm{s}}^{2}=N \frac{\left(\Delta J_{z}\right)^{2}}{\left\langle J_{x}\right\rangle^{2}+\left\langle J_{y}\right\rangle^{2}} .
$$

[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

- If $\xi_{\mathrm{s}}^{2}<1$ then the state is entangled.
- States detected are like this:

Variance of J_{z} is small

- They are good for metrology!

Outline

(1) Motivation

- Why entanglement is important?
(2) Spin squeezing and entanglement
- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j=\frac{1}{2}$
(3) Detecting multipartite entanglement of Dicke states
- Dicke state realized with a BEC of two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a double well (recent results)

Generalized spin squeezing criteria for $j=\frac{1}{2}$

- Let us assume that for a system we know only

$$
\begin{aligned}
\vec{J} & :=\left(\left\langle J_{\mathrm{x}}\right\rangle,\left\langle J_{\mathrm{y}}\right\rangle,\left\langle J_{\mathrm{z}}\right\rangle\right), \\
\vec{K} & :=\left(\left\langle J_{\mathrm{x}}^{2}\right\rangle,\left\langle J_{\mathrm{y}}^{2}\right\rangle,\left\langle J_{\mathrm{z}}^{2}\right\rangle\right) .
\end{aligned}
$$

- Then any state violating the following inequalities is entangled:

$$
\begin{aligned}
\left\langle J_{x}^{2}\right\rangle+\left\langle J_{y}^{2}\right\rangle+\left\langle J_{z}^{2}\right\rangle & \leq \frac{N(N+2)}{4} \\
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2} & \geq \frac{N}{2} \\
\left\langle J_{k}^{2}\right\rangle+\left\langle J_{l}^{2}\right\rangle & \leq(N-1)\left(\Delta J_{m}\right)^{2}+\frac{N}{2} \\
(N-1)\left[\left(\Delta J_{k}\right)^{2}+\left(\Delta J_{l}\right)^{2}\right] & \geq\left\langle J_{m}^{2}\right\rangle+\frac{N(N-2)}{4}
\end{aligned}
$$

where k, I, m take all the possible permutations of x, y, z. [GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007); spin-j: G. Vitagliano, P. Hyllus, I. L. Egusquiza, GT, PRL 107, 240502 (2011).]

Generalized spin squeezing criteria for $j=\frac{1}{2}$ II

- Separable states are in the polytope

- We set $\left\langle J_{I}\right\rangle=0$ for $I=x, y, z$.

Outline

(1) Motivation

- Why entanglement is important?
(2) Spin squeezing and entanglement
- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j=\frac{1}{2}$
(3) Detecting multipartite entanglement of Dicke states
- Dicke state realized with a BEC of two-state atoms
(4) Detecting bipartite entanglement of Dicke states
- Dicke state in a double well (recent results)

Dicke states

- Dicke states: eigenstates of $\vec{J}^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$ and J_{z}.
- Symmetric Dicke states with $\left\langle J_{z}\right\rangle=\left\langle J_{z}^{2}\right\rangle=0$

$$
\left|D_{N}\right\rangle=\binom{N}{\frac{N}{2}}^{-\frac{1}{2}} \sum_{k} \mathcal{P}_{k}\left(|0\rangle^{\otimes \frac{N}{2}} \otimes|1\rangle^{\otimes \frac{N}{2}}\right)
$$

Due to symmetry, $\left\langle\vec{J}^{2}\right\rangle$ is maximal.

- E.g., for four qubits they look like

$$
\left|D_{4}\right\rangle=\frac{1}{\sqrt{6}}(|0011\rangle+|0101\rangle+|1001\rangle+|0110\rangle+|1010\rangle+|1100\rangle)
$$

[photons: Kiesel et al., PRL 2007; Wieczorek et al., PRL 2009;
Prevedel et al., PRL 2009.]
[cold atoms: Lücke et al., Science 2011; Hamley et al., Nat. Phys. 2012.]

Dicke states are useful because they ...

- ... possess strong multipartite entanglement, like GHZ states. [GT, JOSAB 2007.]
- ... are optimal for quantum metrology, similarly to GHZ states.
[Hyllus et al., PRA 2012; Lücke et al., Science 2011.] [GT, PRA 2012;
GT and Apellaniz, J. Phys. A, special issue for " 50 year of Bell's theorem", 2014.]
- ... are macroscopically entangled, like GHZ states.
[Fröwis, Dür, PRL 2011]

Spin Squeezing Inequality for Dicke states

- Let us rewrite the third inequality. For separable states

$$
\left\langle J_{x}^{2}\right\rangle+\left\langle J_{y}^{2}\right\rangle-\frac{N}{2} \leq(N-1)\left(\Delta J_{z}\right)^{2}
$$

holds.

- It detects states close to Dicke states since

$$
\begin{aligned}
\left\langle J_{x}^{2}+J_{y}^{2}\right\rangle & =\frac{N}{2}\left(\frac{N}{2}+1\right)=\max . \\
\left\langle J_{z}^{2}\right\rangle & =0
\end{aligned}
$$

- "Pancake" like uncertainty ellipse.

Multipartite entanglement

- Bose-Einstein condensate, 8000 particles. 28-particle entanglement is detected.

(C) 400

$$
J_{\mathrm{eff}}^{2}=J_{x}^{2}+J_{y}^{2}, \quad J_{\max }=\frac{N}{2} .
$$

[Lücke et al., PRL 112, 155304 (2014).]

Bose-Einstein condensate people

Netflix movie
"Spectral"
Filmed in Budapest

Outline

(1) Motivation

- Why entanglement is important?
(2) Spin squeezing and entanglement
- Entanglement
- Collective measurements
- The original spin-squeezing criterion
- Generalized criteria for $j=\frac{1}{2}$
(3) Detecting multipartite entanglement of Dicke states
- Dicke state realized with a BEC of two-state atoms

4 Detecting bipartite entanglement of Dicke states

- Dicke state in a double well (recent results)

Bipartite entanglement from bosonic multipartite entanglement

- In the BEC, "all the particles are at the same place."
- In the usual formulation, entanglement is between spatially separated parties.
- Is multipartite entanglement within a BEC useful/real?
- Answer: yes!

Bipartite entanglement from bosonic multipartite entanglement II

- Dilute cloud argument

[See, e.g., P. Hyllus, L. Pezzé, A Smerzi and GT, PRA 86, 012337 (2012)]

$$
\left|n_{0}=1\right\rangle\left|n_{1}=1\right\rangle
$$

Bipartite entanglement from bosonic multipartite entanglement III

- After splitting it into two, we have bipartite entanglement if we had before multipartite entanglement.
- The splitting does not generate entanglement, if we consider projecting to a fixed particle number.

[N. Killoran, M. Cramer, and M. B. Plenio, PRL 112, 150501 (2014).]

Experiment in the group of Carsten Klempt at the University of Hannover

- Rubidium BEC, spin-1 atoms.
- Initially all atoms in state $|0\rangle$.
- Dynamics

$$
H=a_{0}^{2} a_{+1}^{\dagger} a_{-1}^{\dagger}+\left(a_{0}^{\dagger}\right)^{2} a_{+1} a_{-1}
$$

Tunneling from mode 0 to the mode +1 and -1 .

- Understanding the tunneling process

$$
|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|1,-1\rangle+|-1,1\rangle)=\text { Dicke state of } 2 \text { particles. }
$$

Experiment in the group of Carsten Klempt at the University of Hannover II

- After some time, we have a state

$$
\left|n_{0}, n_{-1}, n_{+1}\right\rangle=|N-2 n, n, n\rangle .
$$

- That is, $N-2 n$ particles remained in the 0 state, while $2 n$ particles form a symmetric Dicke state.

Experiment in the group of Carsten Klempt at the University of Hannover III

- Important: first excited spatial mode of the trap was used, not the ground state mode.
- It has two "bumps" rather than one, hence they had a split Dicke state.

[K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes, Science 360, 416 (2018).]

Very simple entanglement criterion for singlets

- For separable states of two large spins

$$
\left[\Delta\left(J_{\mathrm{x}}^{(\mathrm{a})}+J_{\mathrm{x}}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{\mathrm{y}}^{(\mathrm{a})}+J_{\mathrm{y}}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{\mathrm{z}}^{(\mathrm{a})}+J_{\mathrm{z}}^{(\mathrm{b})}\right)\right]^{2} \geq \frac{N}{2}
$$

hold. For singlets, the LHS is zero.

- Proof. For product states $\left|\Psi_{\mathrm{a}}\right\rangle \otimes\left|\Psi_{\mathrm{b}}\right\rangle$

$$
\sum_{m=x, y, z}\left[\Delta\left(J_{m}^{(\mathrm{a})}+J_{m}^{(\mathrm{b})}\right)\right]^{2}=\sum_{m=x, \mathrm{y}, \mathrm{z}}\left(\Delta J_{m}^{(\mathrm{a})}\right)^{2}+\sum_{m=\mathrm{x}, \mathrm{y}, \mathrm{z}}\left(\Delta J_{m}^{(\mathrm{a})}\right)^{2} \geq \frac{N_{\mathrm{a}}}{2}+\frac{N_{\mathrm{b}}}{2}
$$

holds.

- True also for separable states due to the concavity of the variance. [GT, Phys. Rev. A (2004).]

Very simple entanglement criterion for Dicke states

- For separable states of two large spins

$$
\left[\Delta\left(J_{\mathrm{x}}^{(\mathrm{a})}-J_{\mathrm{x}}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{\mathrm{y}}^{(\mathrm{a})}-J_{\mathrm{y}}^{(\mathrm{b})}\right)\right]^{2}+\left[\Delta\left(J_{\mathrm{z}}^{(\mathrm{a})}+J_{\mathrm{z}}^{(\mathrm{b})}\right)\right]^{2} \geq \frac{N}{2}
$$

- For Dicke states, the LHS is around $\frac{N}{4}$ for large N, since

$$
\begin{aligned}
{\left[\Delta\left(J_{\mathrm{z}}^{(\mathrm{a})}+J_{\mathrm{z}}^{(\mathrm{b})}\right)\right]^{2} } & =0 \\
{\left[\Delta\left(J_{\mathrm{m}}^{(\mathrm{a})}+J_{\mathrm{m}}^{(\mathrm{b})}\right)\right]^{2} } & =\text { large } \\
{\left[\Delta\left(J_{\mathrm{m}}^{(\mathrm{a})}-J_{\mathrm{m}}^{(\mathrm{b})}\right)\right]^{2} } & \approx \frac{N}{8}=\text { small }
\end{aligned}
$$

for $m=x, y$.

- Not a practical criterion since small noise makes the state undetectable, and it assumes symmetry.

Number-phase-like uncertainty

- We start from the sum of two Heisenberg uncertainty relations

$$
\left(\Delta J_{z}\right)^{2}\left[\left(\Delta J_{\mathrm{x}}\right)^{2}+\left(\Delta J_{\mathrm{y}}\right)^{2}\right] \geq \frac{1}{4}\left(\left\langle J_{\mathrm{x}}\right\rangle^{2}+\left\langle J_{\mathrm{y}}\right\rangle^{2}\right) .
$$

Then,

$$
\left(\Delta J_{z}\right)^{2}\left[\left(\Delta J_{\mathrm{x}}\right)^{2}+\left(\Delta J_{\mathrm{y}}\right)^{2}\right]+\frac{1}{4}\left[\left(\Delta J_{\mathrm{x}}\right)^{2}+\left(\Delta J_{\mathrm{y}}\right)^{2}\right] \geq \frac{1}{4}\left(\left\langle J_{\mathrm{x}}^{2}\right\rangle+\left\langle J_{\mathrm{y}}^{2}\right\rangle\right)
$$

- Simple algebra yields

$$
\left[\left(\Delta J_{z}\right)^{2}+\frac{1}{4}\right] \times \frac{\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}}{\left\langle J_{\mathrm{x}}^{2}\right\rangle+\left\langle J_{\mathrm{y}}^{2}\right\rangle} \geq \frac{1}{4}
$$

- Note that $\left\langle J_{x}^{2}\right\rangle$ appears, not $\left\langle J_{x}\right\rangle^{2}$.

Normalized variables

- Let us introduce the normalized variables

$$
\tilde{J}_{m}^{(n)}=\frac{J_{m}^{(n)} / j_{n}}{\mathcal{J}^{(n)}}
$$

where $m=x, y$ and $n=\mathrm{a}, \mathrm{b}$ (i.e., left well, right well), the total spin is

$$
j_{n}=\frac{N_{n}}{2}
$$

and

$$
\mathcal{J}^{(n)}=\left\langle\frac{\left(J_{\mathrm{x}}^{(n)}\right)^{2}+\left(J_{\mathrm{y}}^{(n)}\right)^{2}}{j_{n}^{2}}\right\rangle^{\frac{1}{2}}
$$

- $\mathcal{J}^{(n)} \approx 1$ indicates a state close to be symmetric in the well, which is the case ideally. In general, $\mathcal{J}^{(n)} \leq 1$.

Uncertainty with normalized variables

Our uncertainty relation is now

$$
\left[\left(\Delta J_{z}\right)^{2}+\frac{1}{4}\right]\left[\left(\Delta \tilde{J}_{x}\right)^{2}+\left(\Delta \tilde{J}_{y}\right)^{2}\right] \geq \frac{1}{4}
$$

We define

$$
\begin{aligned}
& J_{\mathrm{z}}^{+}=J_{\mathrm{z}}^{(a)}+J_{\mathrm{z}}^{(b)}, \\
& \tilde{J}_{m}^{-}=\tilde{J}_{m}^{(a)}-\tilde{J}_{m}^{(b)}
\end{aligned}
$$

for $m=x, y$.

The two-well entanglement criterion

Suggestion of the experimentalists: we need a product criterion, since it is good for realistic noise.

Main result

For separable states,

$$
\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[\left\langle\left(\tilde{J}_{\mathrm{x}}^{-}\right)^{2}+\left(\tilde{J}_{\mathrm{y}}^{-}\right)^{2}\right\rangle\right] \geq f\left(\mathcal{J}^{(\mathrm{a})}, \mathcal{J}^{(\mathrm{b})}\right)
$$

holds, where $f(x, y)=\frac{\left(x^{2}+y^{2}-1\right)^{2}}{x y}$,

Any state violating the inequality is entangled.

Our entanglement criterion vs. simple criterion

- For $j_{\mathrm{a}}=j_{\mathrm{b}}=\frac{N}{4}$ and symmetric states in the wells

$$
\left[\left(\Delta J_{\mathrm{z}}\right)^{2}+\frac{1}{2}\right]\left[\left(\Delta\left(J_{\mathrm{x}}^{(\mathrm{a})}-J_{\mathrm{x}}^{(\mathrm{b})}\right)\right)^{2}+\left(\Delta\left(J_{\mathrm{y}}^{(\mathrm{a})}-J_{\mathrm{y}}^{(\mathrm{b})}\right)\right)^{2}\right] \geq \frac{N^{2}}{16} .
$$

Problem 1: Varying particle number

- The experiment is repeated many times. Each time we find a somewhat different particle number.
- Postselecting for a given particle number is not feasible.
- Consider a density matrix

$$
\varrho=\sum_{j_{a}, j_{b}} Q_{j_{\mathrm{a}}, j_{b}} \varrho_{\mathrm{j}_{\mathrm{a}}, j_{b}},
$$

where $\varrho_{j_{\mathrm{a}}, j_{\mathrm{b}}}$ are states with $2 j_{\mathrm{a}}$ and $2 j_{\mathrm{b}}$ particles in the two wells, $Q_{j_{\mathrm{a}}, j_{\mathrm{b}}}$ are probabilities.

- ϱ is entangled iff at least one of the $\varrho_{j_{a}, j_{b}}$ is entangled.
- We use special normalization in the criterion.

Problem 1: Varying particle number II

- Even if we have a constant total particle number, the ensemble will not be evenly split.
- Probability distribution for having $N / 2+x$ particles

$$
p_{x}=2^{-N}\binom{N}{N / 2+x}
$$

- Variance

$$
\operatorname{var}\left(N_{\mathrm{a}}\right)=\operatorname{var}(x)=\left\langle x^{2}\right\rangle=\frac{N}{4}
$$

- Collective variance

$$
\left[\Delta\left(J_{l}^{(\mathrm{a})}-J_{l}^{(\mathrm{b})}\right)\right]^{2} \approx \sum_{x=-N / 2}^{N / 2} p_{x}\left(\frac{N}{8}+\frac{1}{2} x^{2}\right)=\frac{N}{8}+\frac{1}{2} \operatorname{var}(x)=\frac{N}{4}
$$

Twice as large due to the unequal splitting.

Problem 1: Varying particle number III

- Let us define

$$
D_{I}=\frac{1}{\mathcal{N}_{\mathrm{a}}} J_{l}^{(\mathrm{a})}-\frac{1}{\mathcal{N}_{\mathrm{b}}} J_{l}^{(\mathrm{b})}
$$

for $I=x, y, z$, where $\mathcal{N}_{n}=\sqrt{j_{n}\left(j_{n}+1\right)}$.

- For the variance of D_{l} we obtain

$$
\left(\Delta D_{l}\right)^{2} \approx \frac{N}{N^{2} / 2+4 N-2 x^{2}}
$$

After splitting $|x| \lesssim \sqrt{N / 4}$.

- We have

$$
\left(\Delta D_{l}\right)^{2}=\frac{2}{N}
$$

$\left(\Delta D_{l}\right)^{2}$ is not sensitive to the fluctuation of x if N is large.

Problem 2: States are not always symmertic in a BEC of two-state atoms

- Ideally, the BEC is in a single spatial mode.
- The state of an ensemble of the two-state atoms must be symmetric.
- In practice, the BEC is not in a single spatial mode, so there is no perfect symmetry.
- Our criterion must hadle this.

Correlations for Dicke states

- For the Dicke state

$$
\begin{aligned}
\left(\Delta\left(J_{\mathrm{x}}^{(\mathrm{a})}-J_{\mathrm{x}}^{(\mathrm{b})}\right)\right)^{2} & \approx 0 \\
\left(\Delta\left(J_{\mathrm{y}}^{(\mathrm{a})}-J_{\mathrm{y}}^{(\mathrm{b})}\right)\right)^{2} & \approx 0, \\
\left(\Delta J_{\mathrm{z}}\right)^{2} & =0
\end{aligned}
$$

- Measurement results on well "b" can be predicted from measurements on "a"

$$
\begin{aligned}
J_{x}^{(b)} & \approx J_{x}^{(a)} \\
J_{y}^{(b)} & \approx J_{y}^{(a)} \\
J_{\mathrm{z}}^{(\mathrm{b})} & =-J_{\mathrm{z}}^{(\mathrm{a})}
\end{aligned}
$$

Correlations for Dicke states - experimental results

Here, $J_{\perp}^{(n)}=\cos \alpha J_{\mathrm{x}}^{(n)}+\sin \alpha J_{\mathrm{y}}^{(n)}$.

Further experimental results

A. Black: shot-noise limit. Green circles: experiments.

B: Black: shot-noise limit. Green circles: experiments.
C: Black: perfect symmetry. Blue/red: values for the left/right well.

$$
\mathcal{J}^{(n)}=\left\langle\frac{\left(J_{\mathrm{x}}^{(n)}\right)^{2}+\left(J_{\mathrm{y}}^{(n)}\right)^{2}}{j_{n}^{2}}\right\rangle^{\frac{1}{2}}
$$

Violation of the criterion: entanglement is detected

For separable states,

$$
\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[\left\langle\left(\tilde{J}_{\mathrm{x}}^{-}\right)^{2}+\left(\tilde{J}_{\mathrm{y}}^{-}\right)^{2}\right\rangle\right] \geq f\left(\mathcal{J}^{(\mathrm{a})}, \mathcal{J}^{(\mathrm{b})}\right)
$$

holds, where $f(x, y)=\frac{\left(x^{2}+y^{2}-1\right)^{2}}{x y}$.

Collaborators on entanglement conditions for double-well Dicke states

C. Klempt, I. Kruse, J. Peise, K. Lange, B. Lücke

G. Vitagliano

IQOQI, Wien
Bilbao (G.T.)

M. Kleinmann
U. of Siegen

Other similar experiments at the same time in Science in 2018

Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates,
M. Fadel, T. Zibold, B. Décamps, P. Treutlein

Spatially distributed multipartite entanglement enables EPR steering of atomic clouds,
P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner, M. K. Oberthaler

Summary

- Detection of bipartite entanglement close to Dicke states.
- Non-symmetric states within the wells and a varying particle number can also be handled.
K. Lange, J. Peise, B. Lücke, I. Kruse,
G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes, Science 360, 416 (2018).

THANK YOU FOR YOUR ATTENTION! www.gtoth.eu

Appendix

Proof

Product states. For states of the form $\left|\psi^{(\mathrm{a})}\right\rangle \otimes\left|\psi^{(\mathrm{b})}\right\rangle$.

$$
\begin{aligned}
& {\left[\left(\Delta J_{z}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[\left(\Delta \tilde{J}_{x}^{-}\right)^{2}+\left(\Delta \tilde{J}_{y}^{-}\right)^{2}\right]} \\
& \quad=\left[\left(\mathcal{U}^{(\mathrm{a})}+\frac{1}{4}\right)+\left(\mathcal{U}^{(\mathrm{b})}+\frac{1}{4}\right)\right] \cdot\left(\mathcal{V}^{(\mathrm{a})}+\mathcal{V}^{(\mathrm{b})}\right) \\
& \quad \geq 4 \sqrt{\left(\mathcal{U}^{(\mathrm{a})}+\frac{1}{4}\right)\left(\mathcal{U}^{(\mathrm{b})}+\frac{1}{4}\right) \mathcal{V}^{(\mathrm{a})} \mathcal{V}^{(\mathrm{b})}} \geq 1
\end{aligned}
$$

holds, where we used the notation

$$
\mathcal{U}^{(n)}=\left(\Delta J_{z}^{(n)}\right)^{2}, \quad \mathcal{V}^{(n)}=\left(\Delta \tilde{J}_{x}^{(n)}\right)^{2}+\left(\Delta \tilde{J}_{y}^{(n)}\right)^{2}
$$

for $n=\mathrm{a}, \mathrm{b}$. We used that
(i) $\left[\Delta\left(A^{(\mathrm{a})}+A^{(\mathrm{b})}\right)\right]^{2}=\left(\Delta A^{(\mathrm{a})}\right)^{2}+\left(\Delta A^{(\mathrm{b})}\right)^{2}$,
(ii) Inequality between the arithmetic and the geometric mean,
(iii) Our number-phase like uncertainty.

Proof II

Using $\left\langle\left(\tilde{J}_{\mathrm{x}}^{(n)}\right)^{2}\right\rangle+\left\langle\left(\tilde{J}_{\mathrm{y}}^{(n)}\right)^{2}\right\rangle=1$ for $n=\mathrm{a}, \mathrm{b}$, our inequality for product states yields

$$
2\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right](\mathcal{S}-\mathcal{C}) \geq \mathcal{S},
$$

where correlations between the two subsystems are characterized by

$$
C=\left\langle\frac{J_{\mathrm{x}}^{(\mathrm{a})} J_{\mathrm{x}}^{(\mathrm{b})}+J_{\mathrm{y}}^{(\mathrm{a})} J_{\mathrm{y}}^{(\mathrm{b})}}{j_{\mathrm{a}} j_{\mathrm{b}}}\right\rangle,
$$

and

$$
\left.\mathcal{S}=\mathcal{J}^{(\mathrm{a})} \mathcal{J}^{(\mathrm{b}}\right) .
$$

\mathcal{C} can be negative and $|\mathcal{C}| \leq \mathcal{S}$.
The normalization with the total spin will make it easier to adapt our criterion to experiments with a varying particle number in the ensembles.

Proof III

Separable states. We now consider a mixed separable state of the form $\varrho_{\text {sep }}=\sum_{k} p_{k}\left|\Psi_{k}^{(\mathrm{a})}\right\rangle \otimes\left|\Psi_{k}^{(\mathrm{b})}\right\rangle$. For such states, we can write the following series of inequalities

$$
\begin{gathered}
2\left[\left(\Delta J_{z}^{+}\right)^{2}+\frac{1}{2}\right](\mathcal{S}-C) \geq 2\left[\sum_{k} p_{k}\left(\Delta J_{z}\right)^{2}{ }_{k}+\frac{1}{2}\right]\left[\sum_{k} p_{k}\left(\mathcal{S}_{k}-C_{k}\right)\right] \\
\geq 2\left[\sum_{k} p_{k} \sqrt{\left(\left(\Delta J_{z}\right)^{2}{ }_{k}+\frac{1}{2}\right)\left(\mathcal{S}_{k}-C_{k}\right)}\right]^{2} \geq\left(\sum_{k} p_{k} \sqrt{S_{k}}\right)^{2},
\end{gathered}
$$

Subscript k refers to the $k^{\text {th }}$ sub-ensemble $\left|\Psi_{k}^{(\mathrm{a})}\right\rangle \otimes\left|\Psi_{k}^{(\mathrm{b})}\right\rangle$.
(i) The first inequality in is due to $\left(\Delta J_{Z}^{+}\right)^{2}$ and \mathcal{S} being concave in the quantum state.
(ii) The second inequality is based on the Cauchy-Schwarz inequality. (iii) The third inequality is the application of the previous inequality for all sub-ensembles.

Proof IV

Next, we find a lower bound on the RHS of the last inequality based on the knowledge of $\mathcal{J}^{(\mathrm{a})}$ and $\mathcal{J}^{(\mathrm{b})}$. We find that

$$
\sum_{k} p_{k}\left(\mathcal{J}_{k}^{(\mathrm{a})} \mathcal{J}_{k}^{(\mathrm{b})}\right)^{1 / 2} \geq\left(\mathcal{J}^{(\mathrm{a})}\right)^{2}+\left(\mathcal{J}^{(\mathrm{b})}\right)^{2}-1
$$

which is based on noting $(x y)^{1 / 4} \geq x+y-1$ for $0 \leq x, y \leq 1$.
Using this to bound the RHS from below and dividing by \mathcal{S} we obtain

$$
\left[\left(\Delta J_{\mathrm{z}}^{+}\right)^{2}+\frac{1}{2}\right] \times\left[2-2 \frac{C}{\mathcal{S}}\right] \geq \frac{\left[\left(\mathcal{J}^{(\mathrm{a})}\right)^{2}+\left(\mathcal{J}^{(\mathrm{b})}\right)^{2}-1\right]^{2}}{\mathcal{S}}
$$

