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a Hermite-Gauss modes

w=—HG,, = ViHG,1,5 - Vi + 1HG 41 -
X
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KARSARS

Effective Hamiltonian

i VaN VaN /\T VaN
n “Detection mode”

Mixes neighboring modes with indices 1 C. Fabre, J. B. Fouet, and A. Maitre,
Opt. Lett. 25, 75 (2000)

Quantum enhancements require multimode approach

e Populate at least two adjacent modes Necessary condition for a quantum enhancement
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Population of additional auxiliary modes: Necessary condition for a quantum enhancement

Derivatives of the original modes ,
5 MSome populated mode is nonorthogonal

e to its own derivative
Possible in microscopy?

Alternative: the derivative of some populated

mode is also populated
M. Gessner, N. Treps, C. Fabre, arXiv:2201.04050
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