

Multistability in quantum systems and related cavity QED experiments

Peter Domokos

HUN-REN Wigner Research Centre for Physics Institute for Solid State Physics and Optics

Quantum Information National Laboratory HUNGARY

Institute Seminars, DIPC San Sebastian & UPV-EHU Bilbao, 16-18 October 2024

Cavity QED: a driven-dissipative open quantum system

"many-body"

few atoms but large cooperativity

$$\mathcal{C} = \frac{\mathcal{F}}{\pi} \times N \times \frac{\sigma_A}{\mathcal{A}}$$

 $\mathcal{C} \gg 1$

Phases

- stationary states: dynamical equilibrium of driving and dissipation
- continuous measurement due to dissipation
- order parameter: macroscopic observable

Phase transition

- non-analytic change of the order parameter as a
- control parameter is continuously tuned through
- \cdot a critical point

Quantum bistability

Continuously driven cavity with a strongly-coupled single atom

H. J. Carmichael, Phys. Rev. X 5, 031028 (2025)

Quantum bistability observed in circuit QED

Fink, Dombi ,Vukics, Wallraff, and Domokos, Phys. Rev. X 7 (2017)

Driven Jaynes-Cummings model with damping

Cavity QED

Circuit QED

Transmission spectrum of single-atom CQED systems

Dombi, Vukics, Domokos, Eur. Phys. J. D (2015)

Photon-blockade

Dombi, Vukics, Domokos, Eur. Phys. J. D (2015)

Photon-blockade and its breakdown mechanism

$$E_{n,\pm} = n \,\hbar\omega \pm \sqrt{n} \,g$$

$$\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \propto n^{-3/2} \to 0$$

equidistant ladder → hosts quasicoherent states → attractor of a driven lossy oscillator

Photon-blockade-breakdown at strong drive MP ЭB 9 80 **Semiclassical** 3 $\mathbf{2}$ $\langle a^{\dagger}a \rangle$ 0 $\langle a^{\dagger}a \rangle$ peak grows out 40 1) n [45 1] $-0.8 -0.6 -0.4 -0.2 \Delta_{M \ in \ units \ of \ g\sqrt{N}} -0.2$ smoothly 20 0.0 merging power broadened multiphoton resonances - | Δ_M in units of $g\sqrt{N}$ Dombi, Vukics, Domokos, Eur. Phys. J. D (2015)

Bimodal density matrix

Phase space distribution: mixture of two semiclassical attractors

Thermodynamic limit: $g \rightarrow \infty$, $\eta / g = const$.

,Zero dimension': no increase in system size

Vukics, Dombi, Fink, Domokos, Quantum 2019

Super-quantisation rule for multistability

Self-consistent equation for the quasi-coherent state amplitude

$$\alpha_u = \frac{\eta/\kappa}{1 - i\left(\delta - \frac{ug}{2\kappa|\alpha_u|}\right)}$$

Német, Kurkó, Vukics, Domokos, New Journal of Physics 2024

Quantum trajectories in the multistability domain

Német, Kurkó, Vukics, Domokos, New Journal of Physics 2024

Quantum bistability without singularity

Bimodal density matrix

- *1st order ~ discontinuity*
- $\frac{d}{dt}\rho = L \rho = 0$
- density matrix is a continuous function of all system parameters
- Co-existence of phases
- $\rho_{ss} = (1 F) \cdot \rho_{dim} + F \cdot \rho_{bright}$

Fink, Dombi, Vukics, Walraff, Domokos, Phys Rev X 2017

damental Gaussian mode

Simple transmission blockading mechanism

Time-resolved observation of the transmission blockade breakdown

Defining and calibrating a finite-size measure

Thermodynamic limit: $\mathcal{C} \to \infty, \eta \to \infty$ 90%

T. W. Clark, A. Dombi et al, Phys. Rev. A 105, 063712 (2022)

Finite-size scaling of fluctuations

measured photo-current noise

displaced thermal state

1

$$P_{\rm th,disp}(\alpha) = rac{1}{\pi n_{\rm th}} \exp\left(-|lpha - eta|^2/n_{\rm th}
ight)$$

phase transition
$$eta:0 o\eta/\kappa$$
 $g^{(2)}(0)=2-rac{|eta|^4}{(n_{
m th}+|eta|^2)^2}$

derived from measurement

T. W. Clark, A. Dombi et al, Phys. Rev. A 105, 063712 (2022)

Competing optical pumping processes

B. Gábor et al, Phys. Rev. A 107, 023713 (2023)

Time evolution from different points in phase space

B. Gábor et al, Phys. Rev. A 107, 023713 (2023)

Demonstration of the hysteresis

B. Gábor et al, Phys. Rev. A 107, 023713 (2023)

Switching between stable and unstable phases

Ground state bistability with two cavity modes

B. Gábor, D. Nagy, A. Vukics, P. Domokos, Phys. Rev. Research 5, L042038 (2023)

Phase diagram of the ground state bistability

 $N = 5 \times 10^3$ $g = \gamma/10$

Varying the relative drive stregths at fixed total power

B. Gábor, D. Nagy, A. Vukics, P. Domokos, Phys. Rev. Research 5, L042038 (2023)

Thermodynamic limit: cooperativity $C \rightarrow \infty$

B. Gábor, D. Nagy, A. Vukics, P. Domokos, Phys. Rev. Research 5, L042038 (2023)

Conclusions

- Zero dimensional quantum systems under continuous measurement can host `macroscopic' phases and can undergo phase transitions
- Cavity QED systems are paradigmatic driven-dissipative open quantum systems where a single or a few atoms in strongly coupled to a cavity mode can produce bistability
- The breakdown of the transmission blockade has been observed with time resolution and finite-size scaling of the fluctuations has been performed
- We demonstrated experimentally hysteresis in a first-order phase transition
- There is a limit of cavity-induced bistability in whihe the phases correspond to pure ground states

Acknowledgements

PROJECT FINANCED FROM THE NRDI FUND MOMENTUM OF INNOVATION

