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Cavity QED:	a	driven-dissipative open quantum system

A.	Vukics,	A.	Dombi,	J.	Fink,	P.	Domokos,		Quantum	(2019)

• stationary	states:	dynamical	equilibrium	
of	driving	and	dissipation

• continuous	measurement	due	to	
dissipation

• order	parameter:	macroscopic	observable

Phases
• non-analytic	change	of	the	order	
parameter	as	a

• control	parameter	is	continuously	tuned	
through	

• a	critical	point

Phase	transition

few	atoms	but	 large	cooperativity

“many-body”	



Quantum bistability

Continuously driven cavity with a	
strongly-coupled single atom

Transmission output	is	a	
random	telegraph signal

𝒈 ≫ 𝜿

H.	J.	Carmichael,	Phys.	Rev.	X	5,	031028		(2025)	



Quantum bistability observed in	circuit QED

Johannes	Fink

Fink,	Dombi	,Vukics,	Wallraff,	and	Domokos,	Phys.	Rev.	X	7	(2017)	

3	transmon qubits

Experimental observation



Driven	Jaynes-Cummings model with damping

Cavity	QED Circuit	QED

New J. Phys. 26 (2024) 093009 N Német et al

Figure 1. (a) A spin-3/2 (composed of three qubits) is coupled with the same strength g to a driven resonator mode with
linewidth κ. The system is described by the driven-dissipative Tavis-Cummings model. (b) In the spectrum of the Hamiltonian
without the drive—η= 0 in equation (1)—, the first two excited states split into a doublet and a triplet, respectively, whereas
higher manifolds form quadruplets. (c) For high excitation, each state in the manifold becomes a rung of a closely equidistant
ladder (indexed by u in this work) across manifolds, with each u ladder having different energy spacing, which also depends
slowly on the height, according to equation (5). This is demonstrated by the arrows which are equal in length for a given u, but
differ slightly across the different ladders.

phase transition [5]. Increasing the strength of the coupling between the qubit and the mode leads toward a
thermodynamic limit where the dwell times of the metastable states and their separation in mode intensity
become infinite [5, 13, 26, 27]. The alternation between macroscopically distinct output intensities has been
experimentally demonstrated in circuit-QED with transmon artificial atoms [10, 13]. Transmons are
intrinsically multilevel structures; therefore, realistic characterization potentially requires multiple energy
levels, and circuit QED systems are non-linear par excellence [30–38].

In this paper, we consider a spin-3/2 coupled to a single-mode resonator field (cf figure 1) in order to
reveal the connection between the structure of the non-linear atomic system and the possible multistable
solutions [39]. We will show that these solutions can be determined from a simple algebraic self-consistency
equation, i.e. a ‘super-quantization’ rule. This equation is derived on the basis of an intuitive picture of the
emergent quasi-coherent states and proves to be very accurate, as it is also demonstrated via
quantum-trajectory simulations of the full quantum dynamics of the driven-dissipative system using the
C++QED framework [40, 41]. In the case when the spin-3/2 is composed of three qubits coupled
homogeneously to the mode, we can add single-qubit decay to the quantum trajectories, and demonstrate
the robustness of the quasi-coherent states to this decoherence channel. This is a remarkable result, since the
quasi-coherent states, being derived solely from the Hamiltonian, reside in the completely symmetric
subspace, which is not closed against single-emitter decay.

2. Quasi-coherent states and the superquantization rule

The system Hamiltonian is the driven Tavis-Cummings model [42–44] that in a frame rotating with the drive
frequency reads
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where â and â† are the mode annihilation and creation operators, the Ŝs are the spin operators, and g is the
spin-resonator coupling strength. The resonator mode is tuned to the spin transition frequency. Finally, η is
the amplitude of the coherent resonator driving, with detuning∆ from both the frequencies of the spin and
the mode. We consider photon loss from the resonator described by the Liouvillian operator

L [ρ̂] = κ
(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (2)

where 2κ is the rate of resonator decay. The loss of excitations is compensated by the coherent drive, and
their concurrence leads the system into a steady state.

In order to obtain an intuitive picture of the dynamics, we first consider only the undriven Hamiltonian,
that is, we take η= 0 in equation (1). The eigenstates of this system have been studied in detail [45, 46]. Since
the Hamiltonian conserves the total excitation number n, it is enough to perform the diagonalization on a
subspace spanned by
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Transmission	spectrum	of	single-atom	CQED	systems

Dombi,	Vukics,	Domokos,	Eur.	Phys.	J.	D	(2015)	

Strong	coupling

multi-photon	
resonances

Mean transmitted power



Photon-blockade

Dispersive bistability

Dombi,	Vukics,	Domokos,	Eur.	Phys.	J.	D	(2015)	



Photon-blockade and	its breakdownmechanism

Photon
transmission
blockade equidistant ladder

à hosts quasi-
coherent states
à attractor of	a	driven
lossy oscillator

Photon
blockade



Photon-blockade-breakdown at strong drive

Semiclassical

Dombi,	Vukics,	Domokos,	Eur.	Phys.	J.	D	(2015)	

merging power
broadened multi-
photon resonances

peak grows out	
smoothly



Bimodal	density	matrix
Phase	space	distribution:	mixture	of	two	semiclassical	attractors

Random	telegraph signal

These states are
continuously measured

Dombi,	Vukics,	Domokos,	Eur.	Phys.	J.	D	(2015)	

drive	phase is	
reflected



Phase diagram



Thermodynamic	limit:	𝒈 → ∞, 𝜼 / 𝒈 = 𝒄𝒐𝒏𝒔𝒕.

Vukics,	Dombi,	Fink,	Domokos,		Quantum 2019
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à phases
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‚Zero dimension’	:	no	increase in	system size



Super-quantisation rule for multistability

New J. Phys. 26 (2024) 093009 N Német et al

The eigenvalues read (cf figures 1(b) and (c))
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where ϵ= 3
4(n−1) vanishes for large enough photon numbers, and the eigenvalues can be well approximated

by

λu (n)≈−∆n+ ug
√
n, (4)

with dressed-state ladder indices u ∈ {−3,−1,1,3}. The lower part of the spectrum is ‘qudit-dominated’,
meaning that it is highly non-linear. For high photon numbers n, the frequency difference between the
dressed states corresponding to a given u in adjacent manifolds n and n+ 1 is

∆u (n)≡ λu (n+ 1)−λu (n)≈−∆+
ug

2
√
n
. (5)

The function 1/
√
n is slowly varying such that there is a range in which the difference is almost constant,

i.e. the dressed states with identical u in the high n manifolds span a closely equidistant ladder. This part of
the spectrum can host quasi-coherent states (QCS): states that are defined by probability amplitudes similar
to those of coherent states, but that live not on the spectrum of a harmonic oscillator, but on a certain u
ladder of the spectrum of the coupled qudit-mode system. While a coherent state is unchanged under the
effect of the ladder operator (equivalent to an excitation decay from the mode in a quantum-trajectory
picture), the QCSs are closely unaffected by this same effect. Such states can be attractors of a stochastic
dynamics similar to a multistable telegraph signal, since they are metastable states in a driven-dissipative
scenario. In the qubit case, it has been explicitly shown recently [16] that the ‘bright state’ of the
photon-blockade breakdown bistability, which is the only QCS in that system, is a closely pure state with
probability amplitudes identical to those of a coherent state. Importantly, and analogously with the qubit
case, the larger the amplitude of the QCS, the more it resembles a true coherent state, so the more robust it is
against photon decay (cf equation (9) in [27]).

This is the ground for forming an intuitive picture. The equidistant ladders at high numbers n can be
considered as harmonic oscillators. The well-known solution of an externally driven, lossy harmonic
oscillator leads then to the self-consistent equation for the mean photon number,

n=
η2

κ2 +∆u (n)
2 =

η2/κ2

1+
(
δ− ug

2κ
√

n

)2 , (6)

with δ =∆/κ. Since equation (6) leads to a quadratic polynomial equation in
√
n, at a given detuning, there

can exist two distinct solutions n for each ladder u. However, it can be shown that the secondary root is
non-physical, since it decreases with increasing drive amplitude [47].

The possible maximum number of stationary bright states is thus 4 in the case when the qudit interacting
with the mode is a spin-3/2. From the way this result has been derived above, it is clear that this number
equals the number of dimensions of the qudit. For a given drive amplitude, however, not all of these
solutions are realized over the full quantum dynamics of the driven-dissipative system, since the solution has
to fulfill other conditions that we detail below. The maximum intra-cavity photon number is η2/κ2, reached
at exact resonance, δ = ug/2η.

From the same intuitive picture of the driven-dissipative steady state of what is approximately a
harmonic oscillator, we can obtain a self-consistent equation for the complex intra-cavity field amplitude,
that is more general than equation (6), as it gives information also on the phase [15, 48]:

αu =
η/κ

1− i
(
δ− ug

2κ|αu|

) . (7)
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Self-consistent	equation for the
quasi-coherent state amplitude

Német,	Kurkó,	Vukics,	Domokos,		New	Journal	of	Physics 2024



Quantum trajectories in	the multistability domain

Német,	Kurkó,	Vukics,	Domokos,		New	Journal	of	Physics 2024

Super-quantisation
rule predictions



Quantum bistability without singularity
Bimodal density matrix

• 1st	order ~	discontinuity

• 𝒅
𝒅𝒕𝝆 = 𝑳 𝝆 = 𝟎

• density matrix is	a	
continuous function of	all
system parameters

• Co-existence of	phases

• ρss =	(1	- F)	· ρdim +	F	·	ρbright

Fink,	Dombi,	Vukics,	Walraff,	Domokos,	Phys Rev X	2017
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Single-mode frequency-stabilised optical resonator

• fundamental Gaussian mode
• frequency locking to atomic reference
• frequency comb (transfer resonator)

Experimental setup

𝑻 ≥ 𝟏𝟎 𝝁𝑲

D. Varga et al, Physics Letters A, 2024

CQED	parameters

plano-concave

resonator

𝟖𝟕𝑹𝒃



Simple transmission blockading mechanism
drive	detunings

resonance shift

dispersive	limit

𝑁 ≈ 10!



Time-resolved observation of	the transmission	blockade	breakdown

T. W. Clark, A. Dombi et al, Phys. Rev. A 105, 063712 (2022) 

blockading mixture transparent



Defining	and	calibrating	a	finite-size	measure

Two	orders	of	magnitude	
covered!

T. W. Clark, A. Dombi et al, arXiv:2106.03544 (2021)

10%

90%Thermodynamic	limit:	

T. W. Clark, A. Dombi et al, Phys. Rev. A 105, 063712 (2022) T. W. Clark, A. Dombi et al, Phys. Rev. A 105, 063712 (2022) 



Finite-size	scaling	of	fluctuations

displaced	thermal	state

phase	transition

exponent

measured	
photo-current	noise

T. W. Clark, A. Dombi et al, arXiv:2106.03544 (2021)T. W. Clark, A. Dombi et al, Phys. Rev. A 105, 063712 (2022) 

derived	from	measurement

T. W. Clark, A. Dombi et al, Phys. Rev. A 105, 063712 (2022) 



Competing optical pumping processes
Three-level	scheme	with	repumper

B. Gábor et al,  Phys. Rev. A 107, 023713 (2023)

dispersive	limit



Phase	diagram Optical	bistability

Order
parameter

mean-field	
approximation

cavity	drive	strength
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B. Gábor et al,  Phys. Rev. A 107, 023713 (2023)



Time	evolution from different points in	phase space

repumper
cavity
drive

𝜆/𝛾

5.9×10"#

0.85×10"#

0.27×10"#

B. Gábor et al,  Phys. Rev. A 107, 023713 (2023)



Demonstration	of	the	hysteresis

B. Gábor et al,  Phys. Rev. A 107, 023713 (2023)

Cavity drive	tuned Repumper tuned



Stable bright

Unstable dark

Stable dark

Switching	between	stable and	unstable phases

B. Gábor et al,  Phys. Rev. A 107, 023713 (2023)



Ground state bistability with two cavity modes

Α

Α

Competing non-linear
optical pumping processes

B. Gábor, D. Nagy, A. Vukics, P. Domokos,  Phys. Rev. Research 5, L042038 (2023)



Phase diagram	of	the ground state bistability
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(a)
𝑵 = 𝟓 × 𝟏𝟎𝟑

Varying	the relative drive	stregths at
fixed	total power

B. Gábor, D. Nagy, A. Vukics, P. Domokos,  Phys. Rev. Research 5, L042038 (2023)

Bistability domain

𝒈 = 𝜸/𝟏𝟎
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Both	ground
states are
stable

Thermodynamic limit:	cooperativity C	→∞

Vanishing
excitation

B. Gábor, D. Nagy, A. Vukics, P. Domokos,  Phys. Rev. Research 5, L042038 (2023)

𝑵 = 𝟓 × 𝟏𝟎𝟑, 𝟏𝟎𝟒,	𝟏𝟎𝟓,	𝟏𝟎𝟔



Conclusions

• Zero dimensional quantum systems under continuous measurement can host
`macroscopic’	phases and	can undergo phase transitions

• Cavity	QED	systems are paradigmatic driven-dissipative open quantum systems	 where a	
single or a	few atoms in	strongly coupled to a	cavity mode can produce bistability

• The	breakdown of	the transmission blockade has	been observed with time resolution
and	finite-size scaling of	the fluctuations has	been performed

• We demonstrated experimentally hysteresis in	a	first-order phase transition

• There is	a	limit	of	cavity-induced bistability in	whihc the phases correspond to pure
ground states
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