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QOT via quantum channels

The approach of De Palma and Trevisan1

For any ρ, σ ∈ S(H), the setM(ρ, σ) of quantum transport maps
from ρ to σ is the set of the quantum channels (CPTP maps) such
that

Φ : T1(supp (ρ))→ T1(H), Φ(ρ) = σ.

We can associate with any Φ ∈M(ρ, σ) the quantum state
ΠΦ ∈ S(H⊗H∗) by

ΠΦ =
(
Φ⊗ IT1(H∗)

)
(||√ρ〉〉 〈〈√ρ||) .

1G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199–3234.
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Since
TrHΠΦ = ρT ad TrH∗ΠΦ = σ,

where XT is the transpose map, i.e. XT 〈φ| = 〈φ|X , it induce the
following definition:
The set of quantum couplings assosiated with ρ, σ ∈ S(H) is

C(ρ, σ) = {Π ∈ S(H⊗H∗) : TrHΠ = ρT ,TrH∗Π = σ}.

De Palma and Trevisan showed that for any ρ, σ ∈ S(H), the map
Φ 7→ ΠΦ is a bijection betweenM(ρ, σ) and C(ρ, σ), that is in
striking contrast to the classical case, the quantum couplings are in
one-to-one correspondance with the quantum transport maps.
Why? The primary reason: quantum channels can “split mass” , i.e.
they can send pure states to mixed states.
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The cost operator for fixed self-adjoint operators {Ai}Ni=1:

C =
N∑

j=1

(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2

The transport cost for a coupling Π is

C (Π) = TrH⊗H∗ΠC

The quantum Wasserstein (pseudo-)distance DC (ρ, σ) is defined
by

D2
C (ρ, σ) = inf

Π∈C(ρ,σ)
C (Π)
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Some strange properties
DC (ρ, σ) = DC (σ, ρ)

√

If ρ = σ then the optimal transport map corresponds to the identity
map Φ = I , so DC (ρ, ρ)2 = C

(∣∣∣∣√ρ〉〉 〈〈√ρ∣∣∣∣) and
DC (ρ, ρ)2 = −

N∑
i=1

Tr
(
[Ai ,
√
ρ]2
)

= 2
M∑
i=1

(
Tr (ρA2

i )− Tr (
√
ρAi
√
ρAi )

)
,

which is the famous the Wigner – Yanase information!
For any ρ, τ, σ ∈ S(H) the modified triangle inequality holds:

DC (ρ, σ) ≤ DC (ρ, τ) + DC (τ, τ) + DC (τ, σ).
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Our contribution2

A bipartite quantum state is separable if it can be given as∑
k

pk |Ψk〉〈Ψk | ⊗ |Φk〉〈Φk |,

with
∑

k pk = 1. If a state cannot be written in this form, then it is called
entangled. We denote the convex set of separable states by Ssep. We
define the modified quantum Wasserstein (pseudo-)distance by

D2
sep (ρ, σ) = inf

Π
C (Π) = inf

Π

N∑
j=1

Tr
(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2
Π,

where Π ∈ C (ρ, σ) ∩ Ssep are the separable couplings of the marginals ρ
and σ.

2Géza Tóth, J.P.Quantum Wasserstein distance based on an optimization over
separable states, Quantum 7 (2023), 1143
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For two qubits, it is computable numerically with semidefinite
programming.
In general,

Dsep(ρ, σ) ≥ D(ρ, σ).

If the relation
Dsep(ρ, σ) > D(ρ, σ)

holds, then all optimal Π for D(ρ, σ) is entangled.
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Let us consider the distance between two single-qubit mixed states

ρ =
1
2
|1〉〈1|+ 1

4
I ,

and
σφ = e−i σy

2 φρ+i σy
2 φ,

for N = 1 and A1 = σz .

Thus, an entangled Π can be cheaper than a separable one.
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The modified self-distance

For the self-distance in the modified case for N = 1 we get

Dsep(ρ, ρ)2 =
1
4
FQ [ρ,A],

where

FQ [ρ,A] = 2
∑
k,l

(λk − λl )
2

λk + λl
|〈k |A|l〉|2,

the quantum Fisher information of the state ρ =
∑

k λk |k〉〈k | w.r.t
the selfadjoint operator A.
Note that

Iρ(A) ≤ 1
4
FQ [ρ,A] ≤ (∆A)2

ρ,

where Iρ(A) is the Wigner-Yanase information and (∆A)2
ρ is the

variance.
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Petz’s monotone metrics

D1
n invertible density matrices forms a smooth Riemannian manifold

with tangent space at the footpoint ρ

TρD1
n ≡ {A ∈ Msa

n : Tr A = 0}

A Riemannian metric gρ with footpoint ρ on D1
n is called monotone

metric if
gT (ρ)(T (A),T (A)) ≤ gρ(A,A)

for all TPCP map T and A ∈ TρD1
n.
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Petz’s Theorem on characterisation of monotone metrics

There exists a bijective correspondence between monoton metrics on
D1

n and operator monotone functions f on (0,∞), f (1) = 1 given by

g f
ρ (A,B) = 〈A, (f (LρR−1

ρ )Rρ)−1B〉HS ,

where Lρ(A) = ρA, Rρ(A) = Aρ, and A,B ∈ TρD1
n.

A tipical element of TρD1
n is i [ρ,K ], (K ∈ Msa

n ) and we can define the
metric adjusted skew information by

I f
ρ (K ) =

f (0)

2
g f
ρ (i [ρ,K ], i [ρ,K ]).
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With the choice f (x) = (
√

x+1)2

4 we get the Wigner-Yanase
information:

I f
ρ (K ) = −Tr ([K ,

√
ρ])2.

With the choice f (x) = 1+x
2 we get the quantum Fisher information:

I f
ρ (K ) = FQ [ρ,K ] = 2

∑
k,l

(λk − λl )
2

λk + λl
|〈k |K |l〉|2,

where ρ =
∑

k λk |k〉〈k |.
For a general f we can write explicitly:

I f
ρ (K ) =

f (0)

2

∑
k,l

(λk − λl )
2

λl f (λk/λl )
|〈k |K |l〉|2.
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Summary

For the quantum Wasserstein distance, we restrict the optimization to
separable states.
Then, the self-distance is the quarter of the quantum Fisher
information.
We found a fundamental connection from quantum optimal transport
to quantum entanglement theory and quantum metrology.

Thank you for your kind attention!
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