Quantum Wasserstein distance based on an optimization
over separable states

Jozsef Pitrik
HUN-REN Wigner Research Centre for Physics, Budapest
HUN-REN Alfréd Rényi Institute of Mathematics, Budapest
Department of Analysis and Operations Research, BUTE

Common work with Géza Téth (UPV/EHU Bilbao)

Qisner Ri

a
Jézsef Pitrik OT: classical and quantum 1/13




Basics

QOT via quantum channels

The approach of De Palma and Trevisan!

e For any p,o € S(H), the set M(p, o) of quantum transport maps
from p to o is the set of the quantum channels (CPTP maps) such
that

& Ti(supp (p)) = Tu(H), @(p) =0

@ We can associate with any ® € M(p, o) the quantum state
Mo € S(H®H*) by

MNe = (<D®/T1 > )(H\[» ((Voll) -

1G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199-3234.
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@ Since
TI"HH¢ = pT ad Tl";.,g*rlq) = 0,

where X T is the transpose map, i.e. X (¢| = (¢| X, it induce the
following definition:

@ The set of quantum couplings assosiated with p,o € S(H) is
Clp,o)={NeSHOH") : Tryl=pT, TryyMN=0}.

@ De Palma and Trevisan showed that for any p,o € S(H), the map
® — Mg is a bijection between M(p, o) and C(p, ), that is in
striking contrast to the classical case, the quantum couplings are in
one-to-one correspondance with the quantum transport maps.

@ Why? The primary reason: quantum channels can “split mass”, i.e.
they can send pure states to mixed states.

Jézsef Pitrik OT: classical and quantum 3/13



Basics

o The cost operator for fixed self-adjoint operators {A;} Y ;:

2

Jj=1

@ The transport cost for a coupling I is

@ The quantum Wasserstein (pseudo-)distance D¢(p, o) is defined
by

D (p.0) = inf (M)
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Some strange properties

° DC(p7 U) = DC(U7p) \/
e If p = o then the optimal transport map corresponds to the identity

map & =1, s0 Dc(p, p)* = C (||v/p)) ({v/7|) and
N
Dc(p,p)> = —>_ Tr ([Ai,vol)
i=1

M
= 23" (Tr (pA2) — Tr (VPAI/DAY)) .
i=1

which is the famous the Wigner — Yanase information!

e For any p, 7,0 € S(H) the modified triangle inequality holds:

Dc(p,0) < De(p,7) + De(7,7) + De(r, 0).
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Our contribution?

A bipartite quantum state is separable if it can be given as

D PV (Wi @ [Pr) (D],
P

with >~ px = 1. If a state cannot be written in this form, then it is called
entangled. We denote the convex set of separable states by Ssep. We
define the modified quantum Wasserstein (pseudo-)distance by

N
2
2 - : T
D2, (p,) = inf C() = |rr1]fZ;Tr (A,- ® hyr — by @ A ) n,
J:

where 1 € C (p,0) N Ssep are the separable couplings of the marginals p
and o.

2Géza Téth, J.P.Quantum Wasserstein distance based on an optimization over
separable states, Quantum 7 (2023), 1143
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@ For two qubits, it is computable numerically with semidefinite
programming.
@ In general,
Dsep(p; o) = D(p, o).
o If the relation
Dsep(p,0) > D(p,0)

holds, then all optimal I for D(p, o) is entangled.
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Let us consider the distance between two single-qubit mixed states

1 1

= Z]IN(1] + >/

p=5I0A+ 1,

and .
U¢_efi2¢p+i7y¢

for N =1 and A; = 0,.
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Thus, an entangled I can be cheaper than a separable one.
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The modified self-distance

@ For the self-distance in the modified case for N = 1 we get

1
Dsep(pa P)2 = ZFQ[P’ Al

where

Ak — )2
Folp. Al =23~ B 2 igapn e,
7 Mt

the quantum Fisher information of the state p = Y, A¢|k) (k| w.r.t
the selfadjoint operator A.

@ Note that )
(A) < 3 Falo. A < (8A),

where I,(A) is the Wigner-Yanase information and (AA)? is the
variance.
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Petz's monotone metrics

e D! invertible density matrices forms a smooth Riemannian manifold
with tangent space at the footpoint p

T,Dt ={Ac M?:Tr A= 0}

e A Riemannian metric g, with footpoint p on D} is called monotone
metric if

gT(p)(T(A)ﬂ T(A)) < gp(Aﬂ A)
for all TPCP map T and A € T,D}.
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Petz's Theorem on characterisation of monotone metrics

@ There exists a bijective correspondence between monoton metrics on
D} and operator monotone functions f on (0,c), f(1) = 1 given by

g (A, B) = (A, (F(L,R, " )R,) ' B)ns,

where L,(A) = pA, R,(A) = Ap, and A, B € T,D}.
o A tipical element of 7,D} is i[p, K], (K € M5?) and we can define the
metric adjusted skew information by

) = "t i, k1. k).
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e With the choice f(x) = M we get the Wigner-Yanase
information:

I£(K) = ~Tx (K. V)%

o With the choice f(x) = 11X we get the quantum Fisher information:
{(K) = Folp, K] = 22 G2 i

where p =", A |k) (k|

@ For a general f we can write explicitly:

ZA Ak/A/ (KK,
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Summary

@ For the quantum Wasserstein distance, we restrict the optimization to
separable states.

@ Then, the self-distance is the quarter of the quantum Fisher
information.

@ We found a fundamental connection from quantum optimal transport
to quantum entanglement theory and quantum metrology.

Thank you for your kind attention!
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