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1Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain
2EHU Quantum Center, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Biscay, Spain

3Donostia International Physics Center (DIPC), San Sebastián, Spain
4HUN-REN Wigner Research Centre for Physics, Budapest, Hungary

5Department of Mathematical Sciences, Durham University, Durham, United Kingdom
6International Centre for Theory of Quantum Technologies, University of Gdańsk, Gdańsk, Poland
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Gdańsk, Poland

8Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary
9IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

BME-TTK Theoretical Physics Seminar, 8 March 2024

Róbert Trényi (Wigner/UPV Bilbao) Activating metrologically useful GME 1 / 22



Table of Contents

1 Introduction
Different eras of quantum theory
Multipartite entanglement

2 Quantum metrology
Main goal and quantum advantage
Characterizing metrological performance

3 Improving metrological performance
Taking many copies
Embedding into higher dimension
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Different eras of quantum theory

1st quantum revolution

New laws governing nature
Explaining phenomena that was not possible before

Black-body radiation
Photoelectric effect
Understanding laser operation
Understanding semiconductors

2nd quantum revolution (nowadays)

Controlling quantum systems (cold atoms, trapped ions, Bose-Einstein
condensates, photonic systems, ...)
Harnessing the properties of quantum theory
Quantum computing → speedups in different algorithms → Shor’s,
Grover’s
Quantum communication → quantum key distribution →
unconditional secrecy → BB84, E91, ... protocols
Quantum metrology → improving the precision of parameter estimation

Common point: entanglement is required for quantum advantage
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Definition of (genuine multipartite) entanglement

Definition

An N-partite quantum state is entangled if it cannot be written as

ϱ =
∑
i

piϱ
(A1)
i ⊗ ϱ(A2)

i ⊗ · · · ⊗ ϱ(AN)
i .

Examples

N = 2: |00⟩+ |11⟩
N = 3: (|00⟩+ |11⟩)⊗ |0⟩ and |000⟩+ |111⟩

For N ≥ 3 (multipartite) different levels of entanglement exist.

Examples

N = 4: 3-entangled state (|000⟩+ |111⟩)⊗ (|0⟩+ |1⟩)
N = 5: 3-entangled state (|000⟩+ |111⟩)⊗ (|00⟩+ |11⟩)
N = 6: 2-entangled state (|00⟩+ |11⟩)⊗ (|00⟩+ |11⟩)⊗ (|00⟩+ |11⟩)
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Róbert Trényi (Wigner/UPV Bilbao) Activating metrologically useful GME 4 / 22



Definition of (genuine multipartite) entanglement II.

Definition

An N-partite pure quantum state |ψ⟩ is biseparable if it can be written as

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ ,

where A,B denote non-empty, complementary subsets of the N parties.
A mixed state is biseparable if it is a convex sum of biseparable pure states.

Definition

If an N-partite quantum state is not biseparable then it is genuine
multipartite entangled (GME).

Examples

|GHZ⟩ = 1√
2

(|00...0⟩+ |11...1⟩)

|W⟩ = 1√
N

(|00...1⟩+ ...+ |01...0⟩+ |10...0⟩)
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Basic task in quantum metrology

H is local, that is,
H = h1 + · · ·+ hN

where hn’s are single-subsystem operators of the N-partite system.

Cramér-Rao bound:

(∆θ)2 ≥ 1

FQ [ϱ,H]
,

where the quantum Fisher information is

FQ [ϱ,H] = 2
∑
k,l

(λk − λl)2

λk + λl
|⟨k |H|l⟩|2,

with ϱ =
∑

k λk |k⟩⟨k | being the eigendecomposition.
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Some properties of the quantum Fisher information

Lower and upper bounds

4(∆H)2ϱ ≥ FQ [ϱ,H] ≥ 4Iϱ(H),

where Iϱ = Tr(ϱH2)− Tr(
√
ϱH√ϱH) is the Wigner-Yanase skew

information.

FQ [ϱ,H] is convex in the state.

General derivations yield: [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

The maximum for separable states (shot-noise scaling)

FQ [ϱ,H] ∼ N
Cramér-Rao

========⇒ (∆θ)2 ∼ 1/N

The maximum for k-entangled states

FQ [ϱ,H] ∼ kN
Cramér-Rao

========⇒ (∆θ)2 ∼ 1/kN

The maximum for all quantum states (Heisenberg scaling)

FQ [ϱ,H] ∼ N2 Cramér-Rao
========⇒ (∆θ)2 ∼ 1/N2

Quantum advantage means overcoming the shot-noise scaling.

Róbert Trényi (Wigner/UPV Bilbao) Activating metrologically useful GME 7 / 22



Some properties of the quantum Fisher information

Lower and upper bounds

4(∆H)2ϱ ≥ FQ [ϱ,H] ≥ 4Iϱ(H),

where Iϱ = Tr(ϱH2)− Tr(
√
ϱH√ϱH) is the Wigner-Yanase skew

information.

FQ [ϱ,H] is convex in the state.
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Experimental realizations

Figure from [L. Pezzè et al., Rev. Mod. Phys. 90, 035005 (2018)].
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Qualitative example with spin-squeezed states

N spin-1/2 particles in a magnetic field that points in the y direction.

Dynamics: e−iJyθ, where θ = γBt and Jy = 1
2

∑N
i=1 σ

(i)
y .

state |+1/2⟩⊗N almost |+1/2⟩⊗N

⟨Jz⟩ N/2 ≈ N/2

(∆Jx)2 N/4 < N/4

(∆Jy )2 N/4 > N/4

fully separable entangled

Figure from [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)].
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Error propagation formula

Measuring in the eigenbasis of M we get:

(∆θ)2M =
(∆M)2

|∂θ⟨M⟩|2
=

(∆M)2

⟨i [M,H]⟩2
.

Figure from [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)].

From the Cramér-Rao bound it follows that for any M
(∆M)2

⟨i [M,H]⟩2
= (∆θ)2M ≥

1

FQ [ϱ,H]
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Metrological gain

← Performance of ϱ with H
← Best performance of all

separable states with H

For a given ϱ and local Hamiltonian H = h1 + · · ·+ hN

gH(ϱ) =
FQ [ϱ,H]

F (sep)
Q (H)

,

where the separable limit is

F (sep)
Q (H) =

N∑
n=1

[σmax(hn)− σmin(hn)]2.

If σmax/min(hn) = ±1 → F (sep)
Q (H) = 4N and the maximum of

FQ [ϱ,H] is 4N2 for some entangled ϱ.
gH(ϱ) can be maximized over local Hamiltonians
[G. Tóth et al., PRL 125, 020402 (2020)]

g(ϱ) = max
localH

gH(ϱ).

If g(ϱ) > 1 then the state is useful metrologically.
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Relation to multipartite entanglement

Fully-separable states → g ≤ 1 (shot-noise scaling).

Entanglement is required for usefulness.

Even weakly entangled states can be useful
[G. Tóth and T. Vértesi, PRL 120, 020506 (2018)]

The metrological gain identifies different levels of multipartite
entanglement.

g > k → metrologically useful (k + 1)-partite entanglement.

g > N − 1 → metrologically useful N-partite/genuine multipartite
entanglement (GME).

g = N (FQ = 4N2) is the maximal usefulness (Heisenberg scaling).

There are non-useful GME states [P. Hyllus et al., PRA 82, 012337 (2010)]

What kind of entangled states can be made useful with extended
techniques?
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Activation in quantum information

A state ϱ does not have a certain property but ϱ⊗k does for some k > 1.
This is called activation.

Activating non-locality [M. Navascués and T. Vértesi, PRL 106,
060403 (2011)]

Activating GME [H. Yamasaki et al., Quantum 6, 695 (2022)]

Activating metrological usefulness [G. Tóth et al., PRL 125, 020402
(2020)]
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Multi-copy scheme with interaction between copies

The single-subsystem operators hn’s act between the copies:

N parties

H
am

ilt
on

ia
n

Róbert Trényi (Wigner/UPV Bilbao) Activating metrologically useful GME 14 / 22



Multi-copy scheme with interaction between copies

The single-subsystem operators hn’s act between the copies:

N parties

M
 c

op
ie

s 
of

 t
he

 p
ro

be
 s

ta
te

1.

2.

M.

H
am

ilt
on

ia
n
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The gain can be improved g(ϱ⊗M) > g(ϱ)! [G. Tóth et al., PRL 125, 020402 (2020)]
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Metrologically useful GME activation

Result

Entangled states of N ≥ 2 qudits of dimension d are maximally useful in
the infinite copy limit if they live in the subspace

{|0..0⟩ , |1..1⟩ , ..., |d − 1, .., d − 1⟩}.

The maximum is attained exponentially fast with the number of copies.

ϱ =
d−1∑
k,l=0

ckl(|k⟩⟨l |)⊗N

hn = D⊗M , for 1 ≤ n ≤ N

D = diag(+1,−1,+1,−1, ...)
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Examples

All entangled pure states of the form

d−1∑
k=0

σk |k⟩⊗N .

The state with |GHZN⟩ = 1√
2

(|0⟩⊗N + |1⟩⊗N)

ϱN(p) = p |GHZN⟩⟨GHZN |+ (1− p)
(|0⟩⟨0|)⊗N + (|1⟩⟨1|)⊗N

2
.
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An example for N = 3

Consider the state

ϱ3(p) = p |GHZ3⟩⟨GHZ3|+
1− p

2
(|000⟩⟨000|+ |111⟩⟨111|) ,

with p = 0.8.

1-copy:
FQ [ϱ3(p),HM=1] = 23.0400,

where HM=1 = σ
(1)
z + σ

(2)
z + σ

(3)
z .

2 copies:
FQ [ϱ3(p)⊗2,HM=2] = 28.0976,

where HM=2 = σ
(1)
z σ

(4)
z + σ

(2)
z σ

(5)
z + σ

(3)
z σ

(6)
z .

F (sep)
Q (HM=1) = F (sep)

Q (HM=2) = 12.
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States outside the previous subspace

For N = 3 with the states

|W ⟩ =
1√
3

(|100⟩+ |010⟩+ |001⟩)∣∣W 〉
=

1√
3

(|011⟩+ |101⟩+ |110⟩)

Using the numerical optimization for g(ϱ) [G. Tóth et al., PRL 125, 020402 (2020)].
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Phase noise for N = 3, M = 1 copy

|GHZ⟩ = 1√
2

(|000⟩+ |111⟩) with H = h1 + h2 + h3, where hn = σ⊗M
z .

For M = 1 copy:

FQ [|GHZ⟩ ,H] = 36 = 4N2 (maximal),

FQ [ϱ,H] < 36,

with
ϱ = p |GHZ⟩⟨GHZ|+ (1− p) |GHZϕ⟩⟨GHZϕ| ,

where |GHZϕ⟩ = 1√
2

(|000⟩+ e−iϕ |111⟩).

So ϱ is a mixture of |GHZ⟩ and the phase-error affected |GHZ⟩.
For 1 copy, the quantum Fisher information decreases if there is a
phase-error.
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Tolerating phase noise for N = 3, M = 3 copies

|GHZ⟩ = 1√
2

(|000⟩+ |111⟩) with H = h1 + h2 + h3, where hn = σ⊗M
z .

For M = 3 copies:

FQ [|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,H] = 36 = 4N2 (maximal),

FQ [ϱ,H] = 36,

where ϱ is some mixture of states with phase-error on at most 1 copy:

|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,
|GHZϕ1⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,
|GHZ⟩ ⊗ |GHZϕ2⟩ ⊗ |GHZ⟩ ,
|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZϕ3⟩ .

For 3 copies, the quantum Fisher information stays maximal if there is
a phase-error on at most 1 copy.

Adding more copies protects against phase-error on 1 copy.
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“GHZ”-like states

Result

All entangled pure states of the form

d−1∑
k=0

σk |k⟩⊗N

with
∑

k |σk |2 = 1 are useful for d ≥ 3 and N ≥ 3.

The state for N ≥ 3 with d = 2

|ψ⟩ = σ0 |0⟩⊗N + σ1 |1⟩⊗N

is useful if 1/N < 4|σ0σ1|2 [P. Hyllus et al., PRA 82, 012337 (2010)].
But with d = 3 ∣∣ψ′〉 = σ0 |0⟩⊗N + σ1 |1⟩⊗N + 0 |2⟩⊗N

is always useful.
The non-useful |ψ⟩, embedded into d = 3 (|ψ′⟩) becomes useful.
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Conclusions

Investigated the metrological performance of quantum states in the
multicopy scenario.

Identified a subspace in which metrologically useful GME activation is
possible.

Also improved metrological performance by embedding.

See New J. Phys. 26 023034 (2024)!
Thank you for the attention!
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Optimal measurements

In the limit of many copies (M ≫ 1)

FQ [ϱN(p)⊗M ,H] = 4N2 =⇒ (∆θ)2 ≥ 1/FQ [ϱN(p)⊗M ,H] = 1/4N2

Can we actually reach this limit with simple measurements?

Measuring in the eigenbasis of M (error propagation formula):

(∆θ)2M =
(∆M)2

|∂θ⟨M⟩|2
=

(∆M)2

⟨i [M,H]⟩2
.

For M copies of ϱN(p) we constructed a simple M such that

(∆θ)2M =
1 + (M − 1)p2

4MN2p2

For M = 2 copies of ϱ3(p)

M =σy ⊗ σy ⊗ σy ⊗ σz ⊗ 1 ⊗ 1
+σz ⊗ 1 ⊗ 1 ⊗ σy ⊗ σy ⊗ σy
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The general measurements for Observation 1

ϱ(p, q, r) = p |GHZq⟩⟨GHZq|+(1−p)[r(|0⟩⟨0|)⊗N +(1−r)(|1⟩⟨1|)⊗N ],

with
|GHZq⟩ =

√
q |000..00⟩+

√
1− q |111..11⟩ ,

The following operator, being the sum of M correlation terms

M =
M∑

m=1

Z⊗(m−1) ⊗ Y ⊗ Z⊗(M−m),

where we define the operators acting on a single copy

Y =

{
σ⊗N
y for odd N,

σx ⊗ σ⊗(N−1)
y for even N,

Z = σz ⊗ 1⊗(N−1).

(∆θ)2M =
1/[4q(1− q)] + (M − 1)p2

4MN2p2
.
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Scheme without interaction between copies

Consider M copies of an N-partite state ϱ, all undergoing a dynamics
governed by the same Hamiltonian h:

N parties

H
am

ilt
on

ia
n

FQ [ϱ⊗M , h⊗M ] = MFQ [ϱ, h],

but the maximum for separable
states also increases

F (sep)
Q (h⊗M) = MF (sep)

Q (h).

So the gain remains the same

gh⊗M (ϱ⊗M) = gh(ϱ).

No improvement in the gain!
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White noise

Observation

Full-rank states of N qudits cannot be maximally useful in the infinite copy
limit.

Example: Isotropic state of two qubits

ϱ(p) = p |Ψme⟩⟨Ψme|+ (1− p)1/22,

where |Ψme⟩ = 1√
2

(|00⟩+ |11⟩).

ϱ(0.75) (top 3 curves) and ϱ(0.35) (bottom 3 curves). hn = σ⊗M
z .
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Embedding mixed states

Embedding the noisy GHZ state

ϱ
(p)
N = p |GHZ⟩⟨GHZ|+ (1− p)

1

2N
.

Figure: The metrological gain for the state ϱ
(p)
3 (dashed), embedded into d = 3

(left), d = 4 (right).

ϱ
(p)
3 is genuine multipartite entangled for p > 0.428571

[SM Hashemi Rafsanjani et al., PRA 86, 062303 (2012)].

ϱ
(p)
3 is useful metrologically for p > 0.439576.
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Róbert Trényi (Wigner/UPV Bilbao) Activating metrologically useful GME 22 / 22



See-saw method for optimizing the gain

Used in [G. Tóth et al., PRL 125, 020402 (2020)].

Minimizing

(∆θ)2M = (∆M)2

⟨i [M,H]⟩2 ≥
1

FQ [ϱ,H] with

constraints cn1± hn ≥ 0.

For given ϱ and H = h1 + h2 the
symmetric logarithmic derivate gives
the optimum

Mopt = 2i
∑
k,l

λk − λl
λk + λl

|k⟩⟨l | ⟨k |H|l⟩
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A mixed biseparable state

ϱ =
1

3

( ∣∣ϕ+〉〈ϕ+∣∣
AB
⊗ |0⟩⟨0|C +∣∣ϕ+〉〈ϕ+∣∣

AC
⊗ |0⟩⟨0|B +∣∣ϕ+〉〈ϕ+∣∣

BC
⊗ |0⟩⟨0|A

)
,

where |ϕ+⟩ = 1/
√

2(|00⟩+ |11⟩).

Biseparable, thus not GME.

Entangled across any cut.

Can be prepared with A,B preparing entanglement and then
forgetting who had the entangled qubits.
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