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Basic task in quantum metrology

H is local, that is,
H = h1 + · · ·+ hN ,

where hn’s are single-subsystem operators of the N-partite system.

Cramér-Rao bound:

(∆θ)2 ≥ 1

FQ [ϱ,H]
,

where the quantum Fisher information is

FQ [ϱ,H] = 2
∑
k,l

(λk − λl)2

λk + λl
|⟨k |H|l⟩|2,

with ϱ =
∑

k λk |k⟩⟨k | being the eigendecomposition.
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Metrological gain

← Performance of ϱ with H
← Best performance of all

separable states with H

For a given local Hamiltonian H

gH(ϱ) =
FQ [ϱ,H]

F (sep)
Q (H)

,

where the separable limit is

F (sep)
Q (H) =

N∑
n=1

[σmax(hn)− σmin(hn)]2.

If σmax/min(hn) = ±1 → F (sep)
Q (H) = 4N and the maximum of

FQ [ϱ,H] is 4N2 for some entangled ϱ.
gH(ϱ) can be maximized over local Hamiltonians
[G. Tóth et al., PRL 125, 020402 (2020)]

g(ϱ) = max
localH

gH(ϱ).

If g(ϱ) > 1 then the state is useful metrologically.
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Relation to multipartite entanglement

Fully-separable states → g ≤ 1 (shot-noise scaling).

Entanglement is required for usefulness.

PPT entangled states can be useful. [G. Tóth and T. Vértesi, PRL 120, 020506 (2018)]

g identifies different levels of multipartite entanglement.

g > k → metrologically useful (k + 1)-partite entanglement.

g > N − 1 → metrologically useful N-partite/genuine multipartite
entanglement (GME).

g = N (FQ = 4N2) is the maximal usefulness (Heisenberg scaling).

There are non-useful GME states [P. Hyllus et al., PRA 82, 012337 (2010)]

What kind of entangled states can be made useful with extended
techniques?
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Róbert Trényi (UPV/EHU) Activating metrologically useful GME 5 / 14



Outline

1 Motivation
Quantum metrology

2 Improving metrological performance
Taking many copies
Embedding into higher dimension



Scheme without interaction between copies

Consider M copies of an N-partite state ϱ, all undergoing a dynamics
governed by the same Hamiltonian h:

N parties

H
am

ilt
on

ia
n

FQ [ϱ⊗M , h⊗M ] = MFQ [ϱ, h],

but the maximum for separable
states also increases

F (sep)
Q (h⊗M) = MF (sep)

Q (h).

So the gain remains the same

gh⊗M (ϱ⊗M) = gh(ϱ).

No improvement in the gain!
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Róbert Trényi (UPV/EHU) Activating metrologically useful GME 6 / 14



Scheme without interaction between copies

Consider M copies of an N-partite state ϱ, all undergoing a dynamics
governed by the same Hamiltonian h:

N parties

H
am

ilt
on

ia
n

FQ [ϱ⊗M , h⊗M ] = MFQ [ϱ, h],

but the maximum for separable
states also increases

F (sep)
Q (h⊗M) = MF (sep)

Q (h).

So the gain remains the same

gh⊗M (ϱ⊗M) = gh(ϱ).

No improvement in the gain!
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Multicopy scheme with interaction

The single-subsystem operators hn’s act between the copies:

N parties

H
am

ilt
on

ia
n
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N parties

M
 c

op
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The gain can be improved g(ϱ⊗M) > g(ϱ)! [G. Tóth et al., PRL 125, 020402 (2020)]
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Metrologically useful GME activation

Result

Entangled states of N ≥ 2 qudits of dimension d are maximally useful in
the infinite copy limit if they live in the subspace

{|0..0⟩ , |1..1⟩ , ..., |d − 1, .., d − 1⟩}.

The maximum is attained exponentially fast with the number of copies.

ϱ =
d−1∑
k,l=0

ckl(|k⟩⟨l |)⊗N

hn = D⊗M , for 1 ≤ n ≤ N

D = diag(+1,−1,+1,−1, ...)
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Examples

The state with |GHZN⟩ = 1√
2

(|0⟩⊗N + |1⟩⊗N)

ϱN(p) = p |GHZN⟩⟨GHZN |+ (1− p)
(|0⟩⟨0|)⊗N + (|1⟩⟨1|)⊗N

2
,

All entangled pure states of the form

d−1∑
k=0

σk |k⟩⊗N .
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Optimal measurements

In the limit of many copies (M ≫ 1)

FQ [ϱN(p)⊗M ,H] = 4N2 =⇒ (∆θ)2 ≥ 1/FQ [ϱN(p)⊗M ,H] = 1/4N2

Can we actually reach this limit with simple measurements?
Measuring in the eigenbasis of M (error propagation formula):

(∆θ)2M =
(∆M)2

|∂θ⟨M⟩|2
=

(∆M)2

⟨i [M,H]⟩2
.

For M copies of ϱN(p) we constructed a simple M such that

(∆θ)2M =
1 + (M − 1)p2

4MN2p2

For M = 2 copies of ϱ3(p)

M =σy ⊗ σy ⊗ σy ⊗ σz ⊗ 1 ⊗ 1
+σz ⊗ 1 ⊗ 1 ⊗ σy ⊗ σy ⊗ σy
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Phase noise for N = 3, M = 1 copy

|GHZ⟩ = 1√
2

(|000⟩+ |111⟩) with H = h1 + h2 + h3, where hn = σ⊗M
z .

For M = 1 copy:

FQ [|GHZ⟩ ,H] = 36 = 4N2 (maximal),

FQ [ϱ,H] < 36,

with
ϱ = p |GHZ⟩⟨GHZ|+ (1− p) |GHZϕ⟩⟨GHZϕ| ,

where |GHZϕ⟩ = 1√
2

(|000⟩+ e−iϕ |111⟩).

So ϱ is a mixture of |GHZ⟩ and the phase-error affected |GHZ⟩.
For 1 copy, the quantum Fisher information decreases if there is a
phase-error.
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Tolerating phase noise for N = 3, M = 3 copies

|GHZ⟩ = 1√
2

(|000⟩+ |111⟩) with H = h1 + h2 + h3, where hn = σ⊗M
z .

For M = 3 copies:

FQ [|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,H] = 36 = 4N2 (maximal),

FQ [ϱ,H] = 36,

where ϱ is some mixture of states with phase-error on at most 1 copy:

|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,
|GHZϕ1⟩ ⊗ |GHZ⟩ ⊗ |GHZ⟩ ,
|GHZ⟩ ⊗ |GHZϕ2⟩ ⊗ |GHZ⟩ ,
|GHZ⟩ ⊗ |GHZ⟩ ⊗ |GHZϕ3⟩ .

For 3 copies, the quantum Fisher information stays maximal if there is
a phase-error on at most 1 copy.

Adding more copies protects against phase-error on 1 copy.

Róbert Trényi (UPV/EHU) Activating metrologically useful GME 12 / 14



Outline

1 Motivation
Quantum metrology

2 Improving metrological performance
Taking many copies
Embedding into higher dimension



“GHZ”-like states

Result

All entangled pure states of the form

d−1∑
k=0

σk |k⟩⊗N

with
∑

k |σk |2 = 1 are useful for d ≥ 3 and N ≥ 3.

The state for N ≥ 3 with d = 2

|ψ⟩ = σ0 |0⟩⊗N + σ1 |1⟩⊗N

is useful if 1/N < 4|σ0σ1|2 [P. Hyllus et al., PRA 82, 012337 (2010)].
But with d = 3 ∣∣ψ′〉 = σ0 |0⟩⊗N + σ1 |1⟩⊗N + 0 |2⟩⊗N

is always useful.
The non-useful |ψ⟩, embedded into d = 3 (|ψ′⟩) becomes useful.
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Conclusions

Investigated the metrological performance of quantum states in the
multicopy scenario.

Identified a subspace in which metrologically useful GME activation is
possible.

Also improved metrological performance by embedding.

See arXiv:2203.05538 (2022)!
Thank you for the attention!

Róbert Trényi (UPV/EHU) Activating metrologically useful GME 14 / 14



The general measurements for Observation 1

ϱ(p, q, r) = p |GHZq⟩⟨GHZq|+(1−p)[r(|0⟩⟨0|)⊗N +(1−r)(|1⟩⟨1|)⊗N ],

with
|GHZq⟩ =

√
q |000..00⟩+

√
1− q |111..11⟩ ,

The following operator, being the sum of M correlation terms

M =
M∑

m=1

Z⊗(m−1) ⊗ Y ⊗ Z⊗(M−m),

where we define the operators acting on a single copy

Y =

{
σ⊗N
y for odd N,

σx ⊗ σ⊗(N−1)
y for even N,

Z = σz ⊗ 1⊗(N−1).

(∆θ)2M =
1/[4q(1− q)] + (M − 1)p2

4MN2p2
.

Róbert Trényi (UPV/EHU) Activating metrologically useful GME 14 / 14



White noise

Observation

Full-rank states of N qudits cannot be maximally useful in the infinite copy
limit.

Example: Isotropic state of two qubits

ϱ(p) = p |Ψme⟩⟨Ψme|+ (1− p)1/22,

where |Ψme⟩ = 1√
2

(|00⟩+ |11⟩).

ϱ(0.9) (top 3 curves) and ϱ(0.52) (bottom 3 curves). hn = σ⊗M
z .
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4(∆H)2 ≥ FQ [ϱ,H] ≥ 4Iϱ(H)



Embedding mixed states

Embedding the noisy GHZ state

ϱ
(p)
N = p |GHZ⟩⟨GHZ|+ (1− p)

1

2N
.

Figure: The metrological gain for the state ϱ
(p)
3 (dashed), embedded into d = 3

(left), d = 4 (right).

ϱ
(p)
3 is genuine multipartite entangled for p > 0.428571

[SM Hashemi Rafsanjani et al., PRA 86, 062303 (2012)].

ϱ
(p)
3 is useful metrologically for p > 0.439576.
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