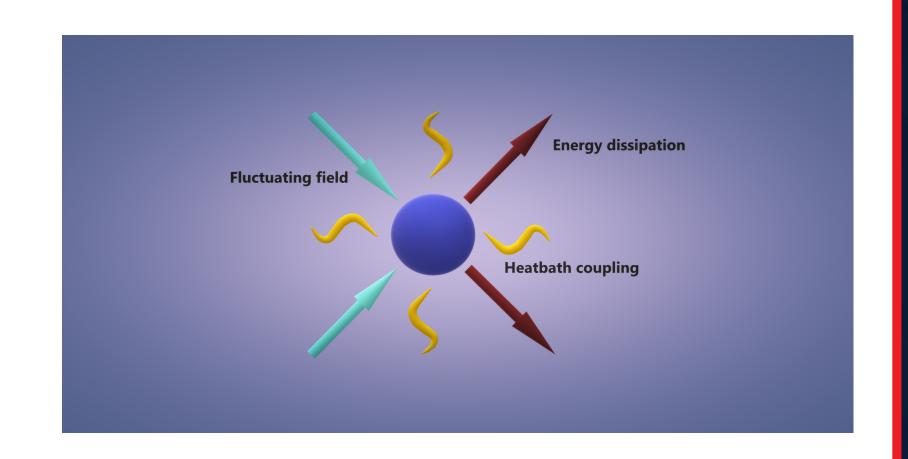
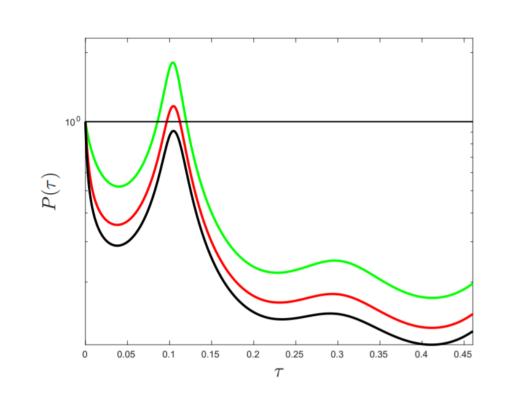
Positivity violations of the density operator in the Hu-Paz-Zhang master equation

Gábor Homa, András Csordás


homa.gabor@wigner.hun-ren.hu, csordas@tristan.elte.hu

Introduction


- Controlling open quantum systems is a difficult problem.
- ullet A real quantum system ${\mathcal S}$ is not isolated.
- ullet ${\cal S}$ interacts with the environment ${\cal R}$.
- Time evolution of the whole system $\mathcal{S} + \mathcal{R}$ is unitary with reversible dynamics.
- ullet Time evolution of open system ${\cal S}$ alone is not unitary with irreversible dynamics.

 $\bullet \ \, {\sf Quantum} \ \, {\sf noise} \, \to \, {\sf decoherence} \, \Longleftrightarrow \, {\sf quantum} \, \\ \, {\sf tum} \, \, {\sf information} \, \, {\sf loss}. \\$

The model

- The main parameters are the temperature T and spectral density of the oscillator bath. We choose the ohmic spectral density with a Lorentz-Drude cutoff function. Parameters: coupling γ , cut-off Ω_c .
- Master equations are from [1, 2].
- We follow the evolution of the density operator $\hat{\rho}(t)$ by Eq. (1).
- We examined some master equations with and without Lindblad form [3, 4, 5, 6, 7].
- Problem: If the master equation is derived only approximately, positivity of the density operator is not always guaranteed.

References

- [1] H.-P. Breuer and F. Petruccione, *The Theory of Open Quantum Systems* (Oxford University Press, Oxford, 2002).
- [2] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D **45**, 2843 (1992).
- [3] J. Z. Bernád, G. Homa, and M. A. Csirik, Eur. Phys. J. D **72**, 212 (2018).
- [4] G. Homa, J. Z. Bernád, and L. Lisztes, Eur. Phys. J. D 73, 53 (2018).
- [5] G. Homa, A. Csordás, M. A. Csirik and J. Z. Bernád, Phys. Rev. A 102, 022206 (2020).
- [6] G. Homa, J. Z. Bernád, and A. Csordás, Phys. Rev. A 108, 012210 (2023).
- [7] Gábor Homa, Dávid Hamar, József Zsolt Bernád, Peter Adam, András Csordás, arXiv:2507.01605.

Acknowledgements

This work was supported by the "Frontline" Research Excellence Programme of the NKFIH (Grant no. KKP133827) and NKFIH grants no. 2022-2.1.1-NL-2022-00004 and 134437.

Gaussian density operator

• The Hu-Paz-Zhang master equation for the central quantum harmonic oscillator:

$$i\hbar\frac{\partial\hat{\rho}}{\partial t} = \left[\frac{\hat{p}^2}{2m} + \frac{m\omega_p^2(t)\hat{x}^2}{2}, \hat{\rho}\right] - iD_{pp}(t)[\hat{x}, [\hat{x}, \hat{\rho}]] + \lambda(t)[\hat{x}, \{\hat{p}, \hat{\rho}\}] + 2iD_{px}(t)[\hat{x}, [\hat{p}, \hat{\rho}]]. \tag{1}$$

- After a long time (in the Markovian limit) the coefficients $\omega_p^2(t), \lambda(t), D_{pp}(t)$ and $D_{px}(t)$ of the master equation become time independent. Non-Markovian coefficients are taken from [1].
- A Gaussian self-adjoint density matrix in the position representation:

$$\rho(x,y,t) = N \exp\left(-A(x-y)^2 - iB(x^2 - y^2) - C(x+y)^2 - iD(x-y) - E(x+y)\right).$$
 (2)

- ullet The Gaussian parameters A, B, C, D, E and N are real, and time dependent.
- If we rewrite equation (1) in position representation the Gaussian form of (2) is preserved.
- ullet Solution of (1) for $\hat{
 ho}$ is a physical operator (positive semidefinite) if and only if

$$A \ge C > 0 \tag{3}$$

We check its positivity by investigating the ratio A/C.

Our main results

• The non-Markovian equation is physical if the stationary solution is physical.

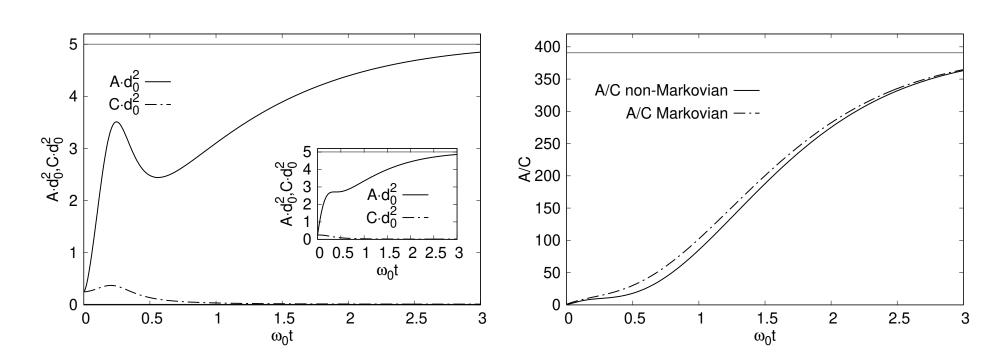
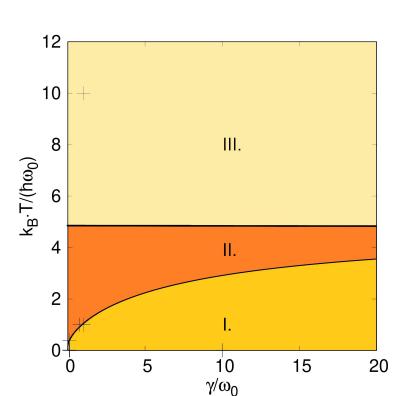



Figure 1

- Figure 1: no positivity violation (the inset figure shows the Markovian run).
- Figure 2, left panel: The stationary solutions are: region I (not physical), II (physical), III (full time evolution is physical).

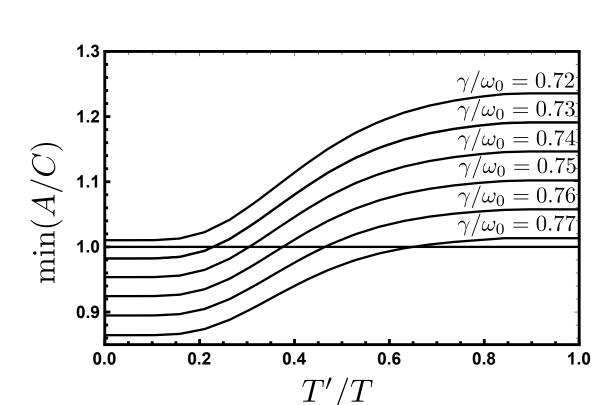


Figure 2

• Figure 2, right panel: Full time analysis of positivity in Markovian runs, if the time evolution of the central oscillator starts from a thermal state with temperature T' and the bath oscillators are also in thermal state with T.

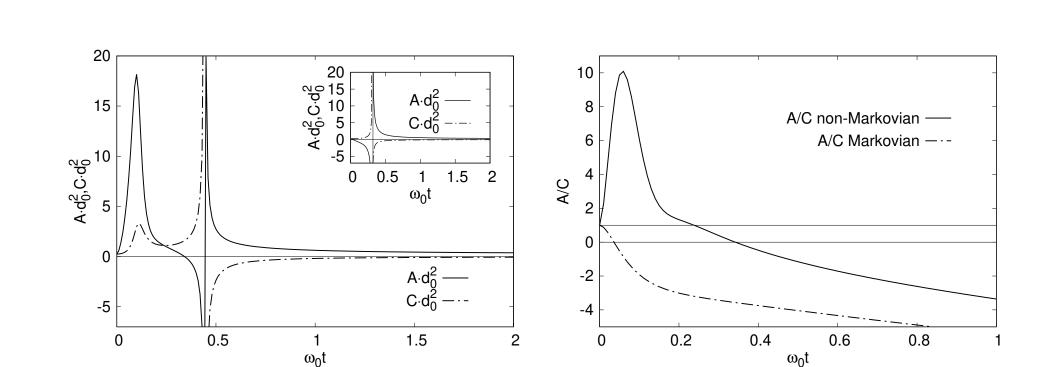


Figure 3

• Figure 3: the parameters belong to region I. The ratio of A/C goes below 1 (indicating positivity violation) and, at a later time, A changes sign and at an even further time, A and, C diverge, changing signs anew $\Longrightarrow \operatorname{Tr} \hat{\rho}$ do not exists.