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We study gradient magnetometry with ensembles of atoms with « The system o = Q(w) R Q(S) spans along the — - N —
arbitrary spin. We calculate precision bounds for estimating the gradient y-axis Y i(bo Ho-tby H))
of the magnetic field based on the quantum Fisher information (qFI). P(x) )ﬁ\ _ [/ — ¢ “(boHo+b1H: =
For states that are sensitive to homogeneous fields, a simultaneous o®) = / lx)x| dx o = - S
measurement is needed, as the homogeneous field must also be (z|z) & Phase-shift generators: !
estimated. o The magnetic field is linear in x 0 =
We present a method to calculate precision bounds for gradient B =By + 1B, + 0O x2> Schematic representation of an S Hy = J §
estimation with two spatially separated atomic ensembles. We also , | ds zdirecti ato";;i:ﬁfl”;bl; cgbl;leiigl]oﬁﬁ)i i; (0 o () 2
consider a single atomic ensemble with an arbitrary density profile, * B points always towards z-direction P (green lines) ?n a Stern- Zx @Iz =
where the atoms cannot be addressed individually, and which is a very By = By(0,0,1) Gerlach apparatus. From the | | 9 \ / P | |
relevant case for experiments. B, = B final state the gradient of the
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eld can be estimated.
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« The Cramér-Rao (CR) matrix inequality Precision bound for states insensitive to the homogeneous field N
COV(bO’ bl) 2 f(sl [Q? HO] = O P(CU) = r_Il(S(an - na/) ¢ ¢ ¢ ¢ ¢ ¢ ¢
o qFI matrix elements are computed based on the generators If ’Fhe state i1s insensitive to the homogeneous field the achievable
precision is given by the CR bound fteh = a(l+ N/2) A chain of atoms (blue disks). All atoms are
(.’F Q)i’ j = .FQ [Q, H is H j] , ) ) N2 _1 polarized perpenc-iilfulag-to the magnetic field. Each
( Ab 1)— < -FQ[ 0, H 1]. O, = a T atom rotate with a different pace (grey arrows).
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Precision bound for states sensitive to the homogeneous field The bounds are invariant under a displacement of the system n,m
Based on the CR matrix inequality the achievable precision is given These bounds are invariant under (o an Fql|+) Yo i J))?
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() (n) M I e The bound seems to scale with the third power of N. The reason is
_ 2 n=1 f o P(x) dw Folo'), 3=, J2])° that the length increases with the particle number. We should compare
FQ[Q, J, | Matteo G. A. Paris, Int. J. Quant. Inf. 7, 125 (2009) metrological usefulness of systems of the same size.
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1 Various ‘"’ spin states and their polarization (red) and uncertainty (green):
N/2 N o The probability distribution function (PDF) is permutationally invariant. : s
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' Atoms placed into two wells. « We assume that the origin is at the center of the cloud of atoms, ;1 = 0.
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Bound for product states of pure states |[¢)) ® | It indicates that if the state is insensitive to the homogeneous fields ' D), is.a simultaneous eigens.tate .Of the collectiye J; and J? operators,
the first term might scale at most with N, so not surpassing the shot- with an eigenvalue zero and Nj(Nj + 1), respectively.
s noise limit. For spin 1/2 systems we have that
(Ab1) ™" < (FQ)ia On the other hand if the state is sensitive to the homogeneous fields
the second term can scale with N? if and only if the correlation factor is (n)2 (n)2 (n)2 1
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Essentially the homogeneous field is estimated in each of the two A pure singlet state is a simultaneous eigenstate of the collective .J, L 2
wells, and then the gradient is computed from the measurement results. and J? operators, with an eigenvalue zero for both operators. =0 if for [, J.]=0
For a mixed singlet:
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We obtained precision limits of estimating the gradient of a magnetic field with atomic ensembles initialized in different states.
For the two-ensemble case, the precision of the estimation of the gradient can reach the Heisenberg limit.
For a single ensemble with localized particles, the shot-noise limit can be surpassed if there is a strong correlation between the particle positions.

Single-ensemble methods can have a huge practical advantage compared to methods based on two or more atomic ensembles since using a single ensemble
makes the experiment simpler and can also result in a better spatial resolution.

sm’f GOBIERNO MINISTERIO |
™ " DE ESPANA DE ECONOMIA, INDUSTRIA
% Y COMPETITIVIDAD

U chist-era

. QUANTERA R | Euroren
: ¥ '..'..e rc Council

FEDER

Fondo Europeo de
Desarrollo Regional

CI:EIEI:

European Cooperation in
Science and Technology

IKerbasque

Basque Foundation for Science



