

FIG. 1. Raman spectrum of normal (a) and isotopically enriched (65%¹⁸O) (b) crystalline KBrO₂.

not correspond to the calculated splitting reported in the literature⁽³⁾ and it would appear therefore that the published force constant data are in error.

Figure 2 is the spectrum of KBr ${}^{18}O_3$ irradiated in air. As can be seen the 792 cm⁻¹ (KBr ${}^{16}O_3$) peak has substantially increased (due to the radiation induced exchange with atmospheric O_2). The ${}^{18}O$ concentrations in the two samples are shown in Fig. 1(b) and Fig. 2 calculated according to reference⁽⁶⁾ are found to be 65.6 and 57.0% respectively. The nature of the spectra was such as to make quantitative calculations difficult, however, considering this fact the agreement with the vendors' specifications of "approximately" 70% ${}^{18}O$ is very good.

References

- Research performed under the auspices of the U.S. Atomic Energy Commission Contract No. AT(40-1)-3660.
- 2. CAMPBELL C. and TURNER J. J. J. chem. Soc. (A) 1241 (1967).
- GARDINER D. J., GIRLING R. B. and HESTER R. E. J. molec. Struct. 13, 105 (1972).

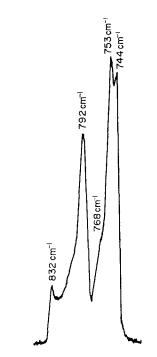


FIG. 2. Raman spectrum of isotopically enriched KBr ¹⁸O₃. After irradiation in air showing relative changes in peak heights.

- VENKATESWARLU K. and RAJALAKSHMI K. V. Ind. J. pure appl. Phys. 1, 380 (1963).
- MELVEGER A. J., JOHNSON E. R. and LADOV E. N. J. inorg. nucl. Chem. 32, 337 (1970).

EARL W. HOLTZSCHEITER EVERETT R. JOHNSON

Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742, U.S.A.

International Journal of Applied Radiation and Isotopes, 1975, Vol. 26, pp. 781-782. Pergamon Press. Printed in Northern Ireland

Dry Distillation Separation of Carrier-Free I-131 from Reactor Irradiated Mg₃TeO₆

(Received 11 April 1975)

IODINE-131 is frequently prepared by irradiation of TeO_2 in a reactor. The ¹³¹I is isolated by dry distillation, which requires only a simple apparatus and does not produce liquid waste.⁽¹⁻⁴⁾ However, when

large amounts of TeO₂ are used the distillation time tends to be long, which causes a reduction in the separation yield. During long irradiations the TeO₂ powder sinters in the reactor. The temperature to which the TeO₂ may be raised is limited by the fairly low melting point and the tendency to decompose into tellurium and oxygen.

We have used Mg_3TeO_6 as a target material. It has a high thermal and radiation stability and may be heated to temperatures up to 880°C. The low crosssection of Mg (0.06 barn) makes the parasitic neutron capture negligible.

Thermoanalysis of Mg₃TeO₆

Thermo-gravimetric measurements on our Mg_3TeO_6 showed a weightloss of $4\cdot3\%$ up to 630° C, presumably due to loss of water. From 630 to 880° C the weight remains constant, but above 880° sublimation or decomposition occurs. A noticeable evolution of heat takes place at 630° together with a structural change resulting in the formation of well-defined crystals. This effect is specially important of the Mg_3TeO_6 has been compressed under 1500–2000 atm to prepare a sample suitable for reactor irradiation.

Recovery of ¹³¹I from irradiated Mg₃TeO₆

A quantity of 80–100 g Mg₃TeO₆ was irradiated in a reactor in a thermal neutron flux of $2.5 \times 10^{13} n/\text{cm}^2$ /sec for 250 or 300 hrs. The irradiated rod-shaped target was heated at different temperatures in a slow stream of air. (The temperature was raised in steps of 50 or 100°C and maintained at each temperature for 15 min.) Results are shown in Fig.¹₄1.

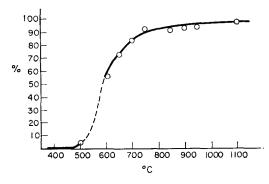


FIG. 1. Percentage of ¹³¹I released in 15 min at different temperatures.

It is seen that the release rate becomes considerable around 600°C. It seems reasonable to attribute this evolution of 131 I to the structural rearrangement observed at 630° rather than to solid phase diffusions. Special experiments have shown that at 700°C between 90 and 95% of the ¹³¹I are recovered within 20–30 min. Analysis of the trapping solution (0.5 to 1% NaHCO₃) has shown that it contained less than 1 μ g/ml of tellurium. By paper electrophoresis it was found that less than 2% of the ¹³¹I was present in the non-iodide form.

The method has been used for the routine production of 131 I at a multi-curie level.⁽⁵⁾

G. То́тн

L. Repas

G. Fábián

Institute of Isotopes of the Hungarian Academy of Sciences Budapest, Hungary

References

- 1. TAUGBØL K. and SAMSAHL K. JENER Report No. 34 (1945).
- 2. EVANS C. C. and STEVENSON J. Br. Pat. 763865 (1956).
- 3. TAUGBØL K. and DAHL J. B. JENER Report No. 52 (1957).
- 4. ZELENAY T. and PLEJEWSKI R. Kernenergie 3, 1198 (1960).
- 5. Hungarian Pat. 2251/MA-2385/4. 1971

International Journal of Applied Radiation and Isotopes, 1975, Vol. 26, pp. 782-784. Pergamon Press. Printed in Northern Ireland

Determination of the Half-Life of ¹⁰³Pd

(Received 28 May 1975)

Summary—THE HALF-LIFE of ¹⁰³Pd was measured with a 0.5 cm³ Ge(Li) detector, a 2 mm thin NaI(Tl) crystal and a 4π -proportional flow counter. Sources of high radiochemical purity prepared from Pd powders of various origins were used. The final result for the half-life is (16.961 \pm 0.016) days.

Introduction

¹⁰³Pd DECAYS in 99:95% of the transitions by electron capture to ¹⁰³Rh^m which subsequently decays by emission of a strongly converted 40 keV γ -ray to the ¹⁰³Rh ground state. Therefore, it seems that a ¹⁰³Pd source should be an ideal long-lived reference source for ¹⁰³Rh^m (T_{1/2} = 56,116 min) activity determination.⁽¹⁻¹⁰⁾

Since the agreement between previously reported half-life data (11-16) is unsatisfactory, a re-determination was undertaken (Table 1). Sources of high