0020-708X/80/0701-0411\$02.00/0

A Novel Target for Reactor-produced ^{193m}Pt

GÉZA TÓTH

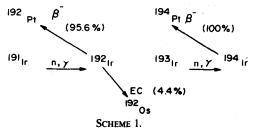
Insitutute of Isotopes of the Hungarian Academy of Sciences, 1525 Budapest, P.O. Box 77, Hungary

(Received 1 December 1979)

¹⁹²Pt and ¹⁹⁴Pt formed due to the β -decay of ¹⁹²Ir and ¹⁹⁴Ir in industrial iridium sources has been separated. According to mass spectrometric assay the separated platinum consisted in 70–79% ¹⁹²Pt and 20–28% ¹⁹⁴Pt. The high enrichment in ¹⁹²Pt makes its application for reactor production of ¹⁹³mPt possible.

SINCE the discovery of ROSENBERG et al.⁽¹⁾ about the anti-tumour activity of cis-dichloradiammineplatinum (DDP), the application of ¹⁹³mPt or ¹⁹⁵mPt labelled cis-DDP in cancer chemotherapy research has been reported by several authors. The administration of radioplatinum-labelled cis-DDP may contribute to therapeutic management by providing information on the distribution and localization of cis-DDP,^(2,3) while investigations on the interaction of cis-DDP and nucleic acids may elucidate the method of action of cis-DDP on tumour cells.^(4,5)

The difficulty arising when one intends to produce either of these radioplatinum isotopes by reactor irradiation with sufficiently high specific activity is the low neutron capture cross section of 194 Pt and/or the low abundance of 192 Pt. In addition, as can be seen from the data listed in Table 1, several radioplatinum isotopes besides 193m Pt and 195m Pt are simultaneously formed during neutron irradiation. Furthermore, the β -decay of 199 Pt yields 199 Au which has to be removed from platinum isotopes.


There are two known ways to increase the specific activity of ¹⁹³mPt and/or that of ¹⁹⁵mPt. One of them is to irradiate enriched ¹⁹⁴Pt,⁽¹⁾ while the other one is based on the utilization of the ¹⁹²Os (α , 3n) ¹⁹³mPt nuclear reaction as performed by LANGE *et al.*⁽³⁾ at the Yale Heavy Ion Accelerator.

Though the ^{193m}Pt formed in this case is a carrier-

free nuclide, the necessity of using a heavy ion accelerator imposes limitations on large-scale production.

Instead of using enriched 192 Pt for production of 193m Pt or utilizing an accelerator to initiate the 192 Os (α , 3n) 193m Pt nuclear reaction, it is more economical to use a mixture of 192 Pt- 194 Pt, which can be separated from spent 192 Ir sources, as target material for reactor irradiation.

As can be seen from the scheme below, the β -decay of reactor-activated natural iridium yields ¹⁹²Pt and ¹⁹⁴Pt, while the electron capture of ¹⁹²Ir results in ¹⁹²Os.

The fraction of an iridium target converted into platinium or osmium during a 100-day irradiation at a thermal neutron flux of $10^{17} \text{ m}^{-2} \text{ sec}^{-1}$ is listed in Table 2.

It is a consequence of the 2 barn neutron capture cross section of ¹⁹²Pt in contrast with that of the 0.09 barn of ¹⁹⁴Pt that reactor irradiation of a ¹⁹²Pt-¹⁹⁴Pt

Natural abundance (%)	Neutron capture cross-section (barn)	Product of the (n, γ) reaction	Half-life	Saturation activity (GBq/g)
¹⁹⁰ Pt 0.0127	150	¹⁹¹ Pt	3d	0.570
¹⁹² Pt 0.78	2	193mPt	4.4d	0.466
194 Pt 32.9	0.09	195mPt	4.1d	0.089
¹⁹⁵ Pt 33.7	27	196Pt	Stable	_
¹⁹⁶ Pt 25.2	0.9	197 Pt	20 h	6.67
	0.05	¹⁹⁷ mPt	80 min	0.37
¹⁹⁸ Pt 7.19	4	199Pt	14 s	8.70
	0.03	199mPt	20 min	0.59

TABLE 1.(3)

* The saturation activity was calculated for a thermal neutron flux of $10^{17} \text{ m}^{-2} \text{ sec}^{-1}$.

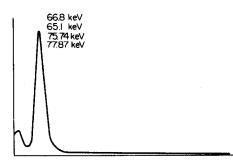


FIG. 1. NaI(Ti) y-ray spectrum of ^{193m}Pt.

mixture—the composition of which may be ranged according to the data in Table 2 between (2.83/0.57) and (10.9/7.2) depending on the neutron spectrum of the given irradiation position—yields overwhelmingly ^{193m}Pt:99.1% in the former case and 97.1% in the latter.

The reactor irradiation of a few mg ¹⁹²Pt-¹⁹⁴Pt mixture separated from spent ¹⁹²Ir sources resulted in ¹⁹³mPt containing a minute fraction of ¹⁹⁵mPt. The

 TABLE 2. Conversion of iridium into platinum and osmium calculated from:

	Neutron capture cross-section (%)	Resonance integral (%)
¹⁹² Pt	2.83	10.9
¹⁹⁴ Pt ¹⁹² Os	0.57	7.2
¹⁹² Os	0.15	0.6

TABLE 3. The average composition of platinum separated from spent ¹⁹²I sources

Isotope	Abundance (%)	
Isotope	. (/o)	
¹⁹² Pt	70–79	
194Pt	20-28	
195Pt	0.2-0.6	
¹⁹⁶ Pt	0.01-0.25	
198Pt	0.05	

 γ -ray spectra, recorded by the use of a NaI(TI) scintillation crystal and a Ge(Li) semiconductor detector, are shown in Figs 1 and 2.

These spectra are in good agreement with the internal conversion coefficients reported by LANGE *et al.*, according to which the 135 and 12.6 keV γ -photons are completely converted in the *K*, *L* and *M* shells.⁽⁶⁾

The single photopeak of the NaI(Tl) γ -spectrum in Fig. 1 is composed of the 65.1–66.8 and 75.7–77.8 keV platinum X-rays while in case of the Ge(Li) γ -ray spectrum, shown in Fig. 2, the 65.1–66.8 and 75.7–77.8 keV X-ray pairs result in two photopeaks. The small peaks occurring at 98.8 and 130 keV are due to ^{195m}Pt. From the data reported here the conclusion can be drawn that ¹⁹²Pt separated from spent ¹⁹²Ir sources is an ideal target material for reactor production of high specific activity ^{193m}Pt.

The abundances of the stable platinum isotopes separated from spent ¹⁹²Ir sources are listed in Table 3.

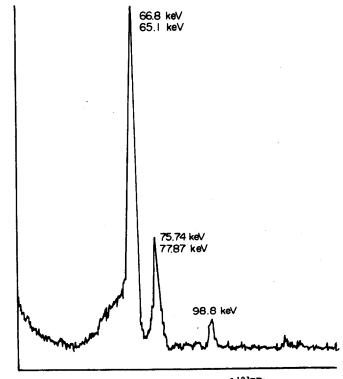


FIG. 2. Ge(Li) y-ray spectrum of ^{193m}Pt.

The figures listed in Table 3 are from the mass spectrometric analysis of several platinum batches separated from ¹⁹²Ir sources produced in different reactors. The variation between the lower and upper limits is due to the difference of the neutron energy distribution of reactors used for irradiation of iridium.

References

- 1. ROSENBERG B., CAMP L. V. and KRIGAE T. Nature 205, 698 (1965).
- WOLF W., MANAKA R. C. and INGALLS R. B. Proc. Symp. New Developments in Radiopharmaceuticals and Labelled Compounds, Copenhagen, 1973. Paper No. IAEA/SM-171/51.
- 3. LANGE R. C., SPENCER R. P. and HARDER H. C. J. nucl. Med. 14, 191 (1973).
- 4. HowLe J. and GALE G. Biochem. Pharmacol. 19, 2757 (1970).
- 5. CONNORS T. In Advances in Antimicrobial and Antineoplastic Chemotherapy, Vol. 2, p. 237. University Park Press, Baltimore (1972).
- 6. Table of Isotopes, 6th edn. Wiley, New York (1967).