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ABSTRACT We show how to detect entanglement with criteria
built from simple two-body correlation terms. Since many nat-
ural Hamiltonians are sums of such correlation terms, our ideas
can be used to detect entanglement by energy measurement. Our
criteria can straightforwardly be applied for detecting different
forms of multipartite entanglement in familiar spin models in
thermal equilibrium.

PACS 03.65.Ud; 03.67.Mn; 05.50.+q

1 Introduction

Entanglement is an important non-classical phe-
nomenon in quantum mechanics which also plays a crucial
role in the novel field of Quantum Information Theory. While
for pure quantum states it is equivalent to correlations, for
mixed states the two notions differ. In this general case, an
N-qubit quantum state is entangled if its density matrix cannot
be written as a convex sum of product states

ρ =
∑

l

plρ
(1)
l ⊗ρ

(2)
l ⊗ ...⊗ρ

(N)
l . (1)

States of the form (1) are called separable. Based on this defin-
ition, several sufficient conditions for entanglement have been
developed. In special cases, e.g., for 2 × 2 (two-qubit) and
2 ×3 (qubit-qutrit) bipartite systems [1, 2] and for bipartite
multi-mode Gaussian states [3] even necessary and sufficient
conditions are known.

However, in an experimental situation usually only limited
information about the quantum state is available. In this case,
only those approaches for entanglement detection can be ap-
plied which require the measurement of not too many ob-
servables. One of such approaches is using entanglement wit-
nesses. They are entanglement conditions which are linear
in expectation values of observables. The theory of entan-
glement witnesses has recently developed rapidly [2, 4–10].
It has been shown how to generate entanglement witnesses
that detect states close to a given one, even if it is mixed or
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a bound entangled state [11, 12]. It is also known how to opti-
mize a witness operator in order to detect the most entangled
states [13]. Apart from constructing witnesses, it is also im-
portant to find a way to measure them. Optimal measurement
of witnesses have been studied in [14–19]. Recently, wit-
nesses have been developed to detect entanglement in physi-
cal systems in the thermodynamical limit [20–22].

Entanglement witnesses can not only be used to detect
entanglement experimentally, but can also be used to charac-
terize the entanglement of a multipartite quantum state. As
we will see later, in the multipartite setting several different
classes of entanglement occur, and entanglement witnesses
can be used to decide in which class a given state is [11].

In this paper we ask what we can do for systems of very
many particles, e.g., for spin chains in thermal equilibrium.
Entanglement in spin chains has already been extensively
studied [23–29]. In Sect. 2 we discuss how to detect entangle-
ment in general in spin models based on the ideas presented
in [20]. In Sect. 3 we study the detection of different types
of multipartite entanglement in these systems as discussed
in [22]. For this aim, we determine what the important ques-
tions are from this point of view in spin systems in the thermo-
dynamical limit. Then we look for appropriate entanglement
witnesses, which are easy to construct and study multipartite
entanglement with them1.

2 Bipartite entanglement

Let us consider first the two-qubit case. The sim-
plest expression which can be used for entanglement detection
must contain at least two correlation terms

W := A(1) A(2) + B(1)B(2) , (2)

where Ak and Bk are operators acting on qubits k = 1, 2. For
simplicity, let us consider Ak and Bk with eigenvalues ±1.

Now, if we want to use W for entanglement detection, we have
to make sure that

inf
Ψ

〈W〉Ψ < inf
Φ∈P

〈W〉Φ , (3)

1 Multipartite entanglement in spin systems in other context was consid-
ered in [30–35]
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where the right hand side of the equation is minimized over the
set of product states P . (Minimization over all mixed separa-
ble states would lead to the same value due to the convexity
of the set of separable states.) Equation (3) expresses the fact
that the minimum of 〈W〉 must be larger for separable states
than for quantum states in general. For that it is necessary to
have [19]

[Ak, Bk] �= 0 , (4)

for k = 1, 2. Here [..] denotes the commutator. Equation (4)
expresses the fact that we have to measure two different ob-
servables at each party. For entanglement detection in an ex-
periment, the ratio of the two minima in (3) must be the largest
possible. It is straightforward to see that this is the case if we
choose operators such that

{Ak, Bk} = 0 , (5)

for k = 1, 2. Here {. . . } denotes the anticommutator. An ex-
ample for such an operator is then

h XY := X(1)X(2) +Y (1)Y (2) , (6)

where X and Y denote Pauli spin matrices. For this operator
the minimum of the expectation value is

inf
Ψ

〈h XY 〉Ψ = −2 . (7)

The state giving the minimum is the two-qubit singlet

|ψs〉 := 1√
2
(|10〉− |01〉) . (8)

For this state 〈X(1) X(2)〉 = 〈Y (1)Y (2)〉 = −1. The minimum for
product states can be obtained as follows. For product states
we have

〈h XY 〉 = 〈X(1)〉〈X(2)〉+ 〈Y (1)〉〈Y (2)〉 ≥ −1 , (9)

where the last inequality follows from the Cauchy–Schwarz
inequality and knowing that 〈X(k)〉2 +〈Y (k)〉2 ≤ 1. Among op-
erators with three correlation terms used for entanglement
detection the following form is optimal

hH := X(1) X(2) +Y (1)Y (2) + Z (1)Z (2) . (10)

The minimum of the expectation value of hH is −3. For sepa-
rable states the minimum is −1 which can be proved similarly
as it has been done for h XY .

Now let us move to the N-qubit case. Consider the expres-
sion

HXY := J
N∑

k=1

X(k) X(k+1) +Y (k)Y (k+1) , (11)

where J > 0 is the coupling constant and according to the
usual assumption for a periodic boundary condition qubit
(N +1) is identical to qubit (1). This is the Hamiltonian for
the XY chain. The minimum for separable states is now

inf
Φ∈P

〈HXY〉Φ = −JN . (12)

This comes from knowing that for product states each term in
the summation in (11) is bounded by −1 as we have seen it be-
fore. The minimum for quantum states can be obtained from
numerical calculations since the XY model is solvable [36].
Similarly, we can define

HH := J
N∑

k=1

X(k) X(k+1) +Y (k)Y (k+1) + Z (k)Z (k+1) . (13)

This is the Hamiltonian for the Heisenberg chain. The mini-
mum for separable states is

inf
Φ∈P

〈HH〉Φ = −JN . (14)

The minimum for quantum states can be obtained for large N
as [37]

inf
Ψ

〈HH〉Ψ = −4
(

ln 2 − 1

4

)
NJ ≈ −1.77NJ . (15)

For our spin chain Hamiltonians the ratio between the
minimum for general quantum states and the minimum for
separable states is smaller than for (6) and (10) since there is
not a quantum state saturating all two-body correlation terms.
In fact, it is easy to see that there is not a Hamiltonian built
from two-body correlations such that its unique ground state
saturates all correlation terms and this ground state is true
multipartite entangled2.

What are the advantages of the expressions (11) and (13)
in detecting entanglement? They are easily measurable lo-
cally, since they are the sum of only a few two-body corre-
lation terms. Moreover, in some physical systems (13) can
directly be measured as the average nearest-neighbor corre-
lation, or as the energy of the system if this system can be
described by a Heisenberg Hamiltonian.

The previous ideas can straightforwardly be applied to
spin chains in thermal equilibrium [20]. Let us consider the
Heisenberg Hamiltonian in an external magnetic field HHB :=
HH + B

∑
k Z (k). For this Hamiltonian, it is easy to bound the

minimum for separable states [20]. Any time 〈HH〉 is below
this value, we know that the thermal state is entangled. This
is demonstrated in Fig. 1. It shows the nearest-neighbor en-
tanglement vs. B and the temperature T . The entanglement
of formation was computed from the concurrence [40–42].
Light color indicates the region where the thermal ground
state is detected as entangled based on the ideas discussed be-
fore. As one can see, there are regions with EF > 0 which

2 To be more specific, for H = ∑
k=1,3,5,... X(k) X(k+1) + Z(k) Z(k+1)

there is a ground state saturating all correlation terms: |ψs〉⊗ |ψs〉⊗
|ψs〉⊗ . . . However, this is the chain of two-particle siglets and it is not
true multi-partie entangled. For having a state with true multi-partie en-
tanglement, we would need that for a Hamiltonian like h = Z(1)Z(2) +
Q(2)Z(3) we have a ground state which saturates both correlation terms.
(Here we assume that Q(2) is different from Z(2) and it has ±1 eigenval-
ues.) Simple calculation shows that there is not such a state. If we allow
using many-body correlations then entanglement criteria with correlation
terms can be constructed such that all correlation terms are saturated by
a unique quantum state which is also true multipartite entangled as ex-
plained in [18, 19]. The related problem of finding correlation operators
for a quatum state such that the state is a simultaneous eigenstate of these
operators is studied in stabilizer theory: See for example [38, 39]
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FIGURE 1 Heisenberg chain of 10 spins. Nearest-neighbor entanglement
as a function of magnetic field B and temperature T

are not detected. However, it can be seen in the figure that
when the system contains at least a small amount of entangle-
ment (∼ 0.07) the state is detected as entangled. Note that the
sharp decrease of the nearest-neighbor entanglement around
Bcrit = 4 for T = 0 is due to a quantum phase transition.

3 Multipartite entanglement

In this section we will discuss how to detect multi-
party entanglement by measuring the operators described be-
fore. Our motivation is that entanglement for many particles
is qualitatively different from the two-party case, and many
new phenomena arise [43–45]. There are several possibilities
to classify entanglement of many parties. We are now look-
ing for the terminology which is appropriate for spin chains of
many particles.

Let us first recall the notion of genuine multipartite entan-
glement. A pure state |ψ〉 of a quantum system of N parties
is called fully separable if it is a product state for all parties,
|ψ〉 = |φ1〉⊗ |φ2〉⊗ ...⊗|φN 〉 . It is called biseparable, when
a partition of the N parties into two groups A and B can be
found, such that the state is a product state with respect to this
partition, namely

|ψ〉 = |φA〉⊗ |φB〉 . (16)

If this is not the case, the state is called genuine multipartite
entangled. Note that the vectors |φA〉 and |φB〉 are allowed
to contain entanglement within their partition. Thus, to prove
genuine multipartite entanglement, it does not suffice to ex-
clude full separability.

For mixed states, these definitions can, as usual, be ex-
tended via convex combinations. Indeed, the definition of full
separability was already given in (1). A mixed state is bisepa-
rable, whenever we can write � = ∑

i pi |ψi〉〈ψi | with bisepa-
rable |ψi〉 and some probabilities pi. Here, the states |ψi〉 are
allowed to be biseparable with respect to different partitions.

Another approach to classify multipartite entanglement
asks whether multipartite entanglement is necessary to form
a given state [22]. In this approach, a state |ψ〉 producible by k-
party entanglement (or k-producible, in short) if we can write
the state |ψ〉 as a tensor product

|ψ〉 = |φ1〉⊗ |φ2〉⊗ . . .⊗|φm〉 , (17)

where the states |φi〉 are states on maximally k-qubits. In this
definition, a two-producible state does not contain any mul-

FIGURE 2 (a) Chain of two-qubit singlets. (b) The same state shifted by
one qubit to the right. The mixture of these two states is two-producible, that
is, does not need three-qubit entanglement when produced from pure states
by mixing

tipartite entanglement, since it suffices to generate the two-
qubit states |φi〉 to arrive at the state |ψ〉 . In addition, we
say that a state contains genuine k-party entanglement if it is
not producible by (k −1)-party entanglement. This definition
can be extended to mixed states as before via convex combi-
nations. Again, a mixed state which is k-producible requires
only the generation of k-party pure entangled states and mix-
ing for its production (see also Fig. 2). Consequently, a mixed
state � contains k-party entanglement, iff the correlations can-
not be explained by assuming the presence of (k −1)-party
entanglement only in the pure subsensembles.

The notions of genuine multipartite entanglement and pro-
ducibility are not completely independent. For example, the
states containing N-party entanglement are just the genuine
multipartite entangled states and the one-producible states are
fully separable. If one can show that a reduced state of k +1
qubits is genuine multipartite entangled, then this implies that
the total state is not k-producible, while the converse is in gen-
eral not true.

For spin chains of macroscopic size, it is in general very
difficult to prove that the total state is genuine N-partite entan-
gled via energy measurements. This is due to the fact that the
notion of genuine N-partite entanglement is extremely sen-
sitive to the properties of a single qubit. Indeed, in order to
prove genuine multipartite entanglement, one has to exclude
the possibility, that one single qubit can be separated from the
remaining N −1 qubits. However, multipartite entanglement
in the reduced states of small numbers of qubits can easily
be detected, as we will see. Moreover, if the reduced state is
multipartite entangled then the state is not two-producible.

Now let us see our results for the X-Y model and the
Heisenberg chain. The proofs for the following theorems are
given in [22]. We always assume periodic boundary condi-
tions and that the number of spins N is even.

Theorem 1. Let � be an N qubit state whose dynamics
is governed by the X-Y-Hamiltonian in (11). If � is one-
producible (fully separable), then

〈HXY〉 ≥ −JN (18)

holds. If 〈HXY〉 < −JN this implies that there are two neigh-
boring qubits such that their reduced state is entangled. For
two-producible states

〈HXY〉 ≥ −9

8
JN (19)

holds. If 〈HXY〉 < −9/8JN the state contains thus tripartite
entanglement and if

〈HXY〉 < −1 +√
2

2
JN ≈ −1.207JN (20)
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N 2 4 6 8 10

TC2 7.28 3.45 3.21 3.18 3.18
TC3 – 2.10 1.75 1.65 1.62
TR3 – 1.85 1.46 1.32 1.26

TABLE 1 Threshold temperatures TC2, TR3 and TC3 for a Heisenberg
chain. The parameters as set to J = kB = 1. See text for details

then there exist three neighboring qubits i, i + 1, i + 2 such
that the reduced state �i,i+1,i+2 of these qubits is genuine tri-
partite entangled.

For the Heisenberg model, we can state the following:
Theorem 2. Let � be an N qubit state with the Heisenberg

Hamiltonian of (11). If � is one-producible (fully separable),
then

〈HH〉 ≥ −JN (21)

holds, while for two-producible states

〈HH〉 ≥ −3

2
JN (22)

holds. Thus, if 〈HH〉 < 3N/2 the state contains genuine tripar-
tite entanglement. Furthermore, if

〈HH〉 < −1 +√
5

2
JN ≈ −1.618JN (23)

then there are three neighboring qubits such that their reduced
state is genuine tripartite entangled.

Let us see an example. Consider the state shown in Fig. 2a

|Φs〉 = |ψs〉⊗ |ψs〉⊗ |ψs〉⊗ . . . , (24)

where the two-qubit singlet is defined in (8). It is easy to see
that state |Φs〉 saturates the inequality (22). It is not surprising,
since it is a two-producible state. Let us now define operator S
which shifts the qubits by one, i.e.,

S |α1〉⊗ |α2〉⊗ |α2〉⊗ ...⊗|αN 〉 (25)

= |αN 〉⊗ |α1〉⊗ |α2〉⊗ ...⊗|αN−1〉 .

Consider the state

ρm := 1

2

(
|Φs〉〈Φs|+ S|Φs〉〈Φs|S†

)
. (26)

This state is the mixture of the singlet chains depicted in
Fig. 2a and b. ρm is not fully separable and is not a product
of single-qubit and two-qubit density matrices. Moreover, the
state ρm has a negative partial transpose with respect to each
partition. However, ρm also saturates the inequality (22) and
it is also two-producible. That is, three-qubit entanglement is
not needed to create it, and it contains no multipartite entan-
glement.

The previous results can straightforwardly be used for ob-
taining a limit temperature for the different forms of entangle-
ment. We define thus the temperatures TR2, TR3, TC2 and TC3

below which either reduced states of two or three parties are

entangled or the total state contains two or three-party entan-
glement. Obviously, TR2 = TC2 > TC3 > TR3 has to hold here.
These temperature bounds are shown for a Heisenberg chains
of a couple of spins in Table 1. As expected, the values for
TC2 = TR2 coincide with the ones of [20]. The given values
for TC3 and TR3 show that in the Heisenberg chain of ten spins
at kBT ≈ J multipartite entanglement plays a role, namely at
least one reduced state is genuine tripartite entangled and the
total state contains tripartite entanglement.

4 Conclusions

We discussed how to construct entanglement con-
ditions using two-body correlations. This implies, that typical
Hamiltonians as appearing in the X-Y model or the Heisen-
berg model can serve for entanglement detection in spin
models. Also different forms of multipartite entanglement can
be detected in this way.

A natural continuation of our work lies in the extension
of our bounds to other systems. Here, spin systems in two or
three dimensions as well as frustrated systems are of inter-
est. Furthermore, it would be also desirable to derive energy
bounds also for higher classes of multipartite entanglement,
e.g., three-producible states.
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