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Distance preserving 1D Turing-wave models via CNN,
implementation of complex-valued CNN and solving a simple
inverse pattern problem (detection)

G. Téth, P. Foldesy, and T. Roska

Analogical and Neural Computing Laboratory, Computer and Automation Institute of the
Hungarian Academy of Sciences, Kende u. 13, Budapest H-1111, Hungary

Abstract - In the first part of this paper a CNN implementation of a reaction-diffusion system is
described that produces distance preserving periodic Turing patterns. In the second part the
CNN with complex-valued templates are introduced, presenting an application for pattern
generation. In the third part a method for black-and-white pattern detection will be described.

1. Introduction

The implementation of PDEs using CNN has been reported recently [5,6,11]. Turing-patterns are introduced by
A. M. Turing [1] in 1952. They appear in physics, chemistry, biology. The hypothetical molecular mechanism is
called reaction-diffusion system, and develops periodic patterns from the initially inhomogeneous state. Practically,
the initial state always contains inhomogeneity, and this is enough to start pattern generation.

Shigeru Kondo and Rihito Asai [2] used Turing-patterns to simulate the behavior of the skin of the marine
angelfish Pomacanthus. On the skin of this fish the width of the stripes is independent of the length of the fish. As
the fish grows, new vertical stripes appear between two old stripes, so these stripes are not fixed in the skin. Unlike
mammal skin patterns which simply enlarge proportionally during body growth, these stripes maintain the spaces
between the lines.

In this paper, in section 2 we show a CNN model of this phenomenon. In sections 3 and 4 we show how a
complex-valued CNN can be implemented with two layers, and used for pattern generation. In section 5 we show a
single 1D pattern detection mechanism.

2. CNN model of a one-dimensional Turing-type reaction-diffusion system found in
Angelfish

2.1 Stripes. arising from Turing-type reaction-diffusion equations
In [2], the following reaction-diffusion equations were identified as the governing equations for forming
patterns:

d*4 dl d’l

=ClA+c21+c3+DA—d?“—gAA Z=CAA+CS+D,E—g,] )

dt

Here x is the coordinate for the one-dimensional space, 4 and / are the concentrations of the two so-called
morphogens, the Activator and Inhibitor molecules. Parameters ¢;.g;, D; are constants. In [1] it is proved that one of
the spatial frequency components of the concentrations grows faster than the others and will eventually dominate. In
other words, a spatial sine wave appears. This feature of the equations can be used for sine wave generation.

2.2. Realization using a 1D double-layer first-order CNN

" The equations (1) are discretized in space in order to model it with a 1D cellular neural network [5]. The general
orm of the discretized equations is:

0-7803-3261-X/96/$5.00 © 1996 |IEEE.

AR A AT




ADVANCES IN CNN THEORY AND APPLICATIONS -- |

dA

dt dt

The parameters a, b, ¢, d, ¢, f; [ and V can be easily expressed in terms of ¢, g, and D;.
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Figure 1. Stripes in an increasing cell array. At start the length of the cell block is 60. After a given time it
increases by 5%. (One inner cell of a 20 cell block is duplicated,) Three snapshots are shown.
(a) Two stripes and 60 unit long array. (b) Three sfripes and 90 unit long array. (c) Four stripes
and 115 unit long array. g

v(]r'-l _21.' +];+1) (2)

3 and Dj<

The cellular neural network templates implementing equations (2) are:

A2to1=[0 b 0] Ii=¢
Azte2=[ Vv (e-2v+l) V] I=f 3)

Alol=[ b (a-2u+1) K]
Alto2=10 d 0]

The phenomenon found in Angelfish can be modeled in the following way. We start the network that produces
Turing-patterns. (The initial state is a random noise.) When the network reaches the steady state a new cell is added
at the right edge of the cell array. Then we start the network and wait again. This sequence can be repeated several
times. An example is shown in Figure 1. As the array size changes from 51 to 52 the second peak splits and a new
one appears.

3. Complex valued CNN templates

Complex neural cells and networks were introduced in [10,12], where so-called multi-valued cells and complex
templates were used. In the realization presented here both the templates and the states are complex. All complex
variables are represented by their real and imaginary parts, and the implementation uses 2 standard CNN layers. -

The state equation of the complex-valued CNN is:

X, +JX,,
d(*fwdj;___fw):—()(&,, T S +jd,), W +ﬂ?_u}+(mzw_ _}(AR + ), U +Up) @)
Jenr(l,

(ke Nr(i,j)
where j=+/—1. The complex equation can be separated into two real equations:

d¥o.
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aX’,l' .
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The templates of the complex-valued CNN and its realization by a double-layer real-valued CNN are given

t (Time)

below:

layer feedback control current
Complex: ArtiAl Bp+iBy Igtil
Real: Self: AR Br Ir
- From Imaginary: -Ap -B;
Imaginary: Self: Ap Br Iy
From Real: Ap B

4. Pattern generation with complex-valued templates

Here an application of the complex-valued CNN templates will be used to generate one-dimensional periodic
Patterns and we will compare the solution to the sirgle-layer real-valued CNN implementation. We will see that in
the case of complex-valued CNN the template size is only 3x1, in the case of the real-valued CNN it is 5x1.

NCX! we design a CNN to generate sine waves. The 4 template has a band-pass filter spectrum to achieve that
starting from any initial state at the end only one spatial harmonic remains ([8-9]).
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omous CNN is described, that has a zero B template and I bias. Suppose that we are in the |;
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The relation between the a; convolution

(6)
mask and the A template is:

A:[a, o, a (a,+1) a, a2 - i @

Let afw] be the spatial spectrum of g; and v[0 J(t) the spatial spectrum of the state v, at time . Thn:

v[w](t) can be expressed in the following way [8-9]:
Violw=vlel0e "
If the real part of afw] is positive only in interval [0g-A®,00

amplitude of the frequency components around ©g. Practically, in a
the frequency components. If only the frequency components around @ increase

frequency g will appear.
The following complex-valued template (9) has this property.

(8)
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tants. In this case afo] is maximum at @=wy.

where a, b, (0 are positive cons!
around o). This can be achieved with the proper settings of a and b: max afo]=

positive value.
The following templates are capable of generating sine waves with period-length L=10:
A=[0.202-0.147] 0.6 0.202+0.147j ] B=[0] 1=0 (10)

In Figure 2 the generation process can be seen in case of a peak initial state. The pattern generation can be

realized also by a real-valued CNN with 5x1 templates:

A=[-a dacos(wg) (b+1) 4a-cos(®g) -a) B=[0] =0 (1)

where @ and b are positive constants. As in the previous case, the constants must be chosen knowing that the

maximum of the spectrum must be a small positive value.

s [T oo

(a) (b) (c)

Figure 2. Generating spatial sine waves (with period-length of 10 units) designing in the
frequency domain. (a) The initial state (that is a peak), and the output of the real layer
after (b) 30 and (c) 60 T can be seen. After 1007 the whole area is filled with sine

peaks.
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uppose that we are in the linear

. 5. 1D black and white pattern detection with 3x1 templates
on denoted by ‘* is (capacitance

In this section a new method for pattern detection on a one-dimensional black-and-white image is given. The
main problem is to measure the length of a black or a white stripe with the CNN that contains only locally

6) interconnected cells. Thus we have to measure a stripe with length of 20-30 units with a CNN that has a template
size of 3 units. First an algorithm independent of the implementation will be presented then the realization with
CNN will be described. The solution proposed here uses a series given by a recursive formula,
As mentioned above, first an algorithm independent of the implementation will be explained. Suppose, that we
(M want to detect a stripe series containing black stripes with length of 5 units and 3 units space between them. (Thus

the required pattern consists of black and white stripes with length of 5 and 3 units, respectively.)

of the state v,; at time f. Then oF

(m/m[m|m (000 n e se/s000e)ese|00]/s8)w] 1Dinpuimge
®) 1/2|3]4|5[1|2(3|1]{2|3]|4|5/1]|2]3|1]2]|3]4|1]2]1]2]3]|1. Counting fromeft to right
mnctwork.wil]increase.onlythe- 5(413/2113|2(1{5|4|3[2]13]2|1(4[3|2/1{2|1|3|2]1]|2 Counting fromrightto left
;th;:[f:ﬁ;ﬂl;tl:;eﬁfﬁﬁ;agiﬁ; 6 6/66/6|alalal6]6l6|6]6]ala|a]s]s]5]5]3]3]4]4]4|3 Additionofrow2and3
E 6/6/6/6/6/4/4|4\6/6/6|6|/6[(4/4/4/6/6|6|6|4|4|6]|6]| 64 Required value for row4
0[0[0/0{0[0[0|0[0/0[0|0[0]|0|0]01/—1l—1/—1{-1|1/-2|-2/-2, 5. Subtraction of ow 5 from 4

®

»g. We require that afw]>0 only;
nJ=afwy’” b must be a small 2

Table I~ Algorithm for stripe detection. The pattern to detect contains black siripes with length of 5 units and 3
units space between them. If there is a zero in the last row then there the algoritm detected the desired
stripes.

gth L=10: The steps of the detecting algorithm are the following (See also Table I):

(10)

Step I Count from left to right and put the result in row 1. Restart counting, if the actual element and the previous
one of the black and white input image are different (i.e., if the border of a single-colored area is reached).

Step2  Count from right to left in a similar way and put the result in row 2.

Step3  Add row 1 and the row 2 and put the result in row 3. There is under a black or a white area its length plus
one. To decide whether there are the desired stripes or no, we must compare the elements of the fourth row
with 5+ /=6 under a black stripe and with 3+ /=4 under a white stripe

Step4  Write in row 4 the value with which we should compare the elements of row 3 to detect the stripes with the
desired length. 7

Step 5 Subtract of the row 5 from row 4 and put the result in row 5. If it is zero then there the required stripe series
was found.

-ate. The pattern generation can be;

an

s must be chosen knowing that th

Next, the implementation in CNN will be described. It will be a three-layer network, although it can be
implemented in CNN Universal Machine, too.

The first and the second layer performs the countation in both two directions (step 1 and step 2). A non-linear
template (so-called switched type [13]) is used for this task, where the variable clement of the 4 matrix depends on
the actual cell states, This template starts the countation at the border of the stripes.

The third layer summs the results of the previous two layers (step 3). This layer also performs the comparsion to
'-hff desired length (step 4). The base of the comparsion can be tuned as required, by varying the interaction between
this and the previous layers.

The third layer has a special output nonlinearity, which detects zero state of the cells with a given tolerance. The

Mary output of the this layer shows, where the input has exactly the required stripes.

10 units) designing in the
1 the output of the real layer
hole area is filled with sine
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