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Abstract - Quantum-dot Cellular Automata (QCA) may offer a viable
alternative of traditional transistor-based technology at the nanoscale.
When modeling a QCA circuit, the number of degrees of freedom
necessary to describe the quantum mechanical state increases
exponentially with the system size. Based on the coherence vector
formalism a model is constructed that makes it possible to include only
those degrees of freedom that are important from the point of view of the
dynamics.

1   Introduction

In recent years the development of integrated circuits
has been essentially based on scaling down, that is,
increasing the element density on the wafer. Scaling
down of CMOS circuits, however, has its limits. Above
a certain element density various physical phenomena,
including quantum effects, conspire to make transistor
operation difficult if not impossible. If a new
technology is to be created for devices of nanometer
scale, new design principles are necessary. One
promising approach is to move to a transistor-less
cellular architecture based on interacting quantum
dots, Quantum-dot Cellular Automata (QCA, [1-5]).

A QCA cell consists of four (or five)
electrostatically coupled quantum-dots arranged in a
square pattern. Information is encoded in the
arrangement of charge (i. e., two extra electrons)
within the cell. When a cell is switched, these electrons
tunnel through interdot barriers to neighboring dots
inside the cell.

After developing the basic logic gates the
theory has been extended to large arrays of devices and
computer architecture questions. A key advance was
the realization that by periodically modulating the
inter-dot barriers, clocked control of QCA circuitry
could be accomplished. The modulation could be done
at a rate which is slow compared to inter-dot tunneling
times, thereby keeping the switching cells very near
the instantaneous ground state. This quasi-adiabatic
switching [4] permits both logic and addressable
memory to be realized within the QCA framework. It
allows a pipe-lining of computational operations.

The ability of modeling large cell arrays is
crucial for the development of complex QCA circuits.
In a classical electronic circuit the number of state
variables (i.e., voltages of capacitors or currents of
inductors) increases linearly with the number of

building elements. Unfortunately, for a QCA circuit
the number of quantum degrees of freedom increases
exponentially with the system size. Using the Hartree
approximation reduces the number of state variables
drastically and it can still give quantitatively good
results in many cases. Thus even ignoring many
quantum degrees of freedom, the dynamics obtained
from the model remains close to the “exact” dynamics
obtained from the many-body Schrödinger equation. In
other cases, the Hartree method can give quantitatively
wrong results.

The intercellular Hartree approximation [3]
can reduce the number of state variables since it
neglects all intercellular correlations. In general, the
correlation of two quantities, A and B can be defined as

. (1)

In this paper the role of correlations in the quantum
dynamics of QCA circuits is examined. A model is
proposed which makes it possible to include as much
quantum correlation degrees of freedom as necessary
in order to obtain the correct dynamics.

2   Quasi-adiabatic switching with Quantum-
dot Cellular Automata

The QCA cell consists of four quantum dots as shown
in Fig. 1(a). Tunneling is possible between the
neighboring dots as denoted by lines in the picture.
Due to Coulombic repulsion the two electrons occupy
antipodal sites as shown in Fig. 1(b). These two states
correspond to charge polarization +1 and -1,
respectively, with intermediate polarizations
interpolating between the two.

Figure 1: (a) A QCA cell. (b) The two possible charge
polarizations.

When placed in proximity, the cells align with
each other. A one-dimensional array of cells[4] can be
used to transfer the polarization of the driver at one end
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of the cell line to the other end of the line. Thus the cell
line plays the role of the wire in QCA circuits.
Moreover, any logical gates (majority gate, AND, OR)
can also be implemented, and using these as basic
building elements, any logical circuit can be
realized[4].

In this paradigm of ground state computing,
the solution of the problem has been mapped onto the
ground state of the array. However, if the inputs are
switched abruptly, it is not guaranteed that the QCA
array really settles in the ground state, i.e., in the
global energy minimum state. It is also possible, that
eventually it settles in a metastable state because the
trajectory followed by the array during the resulting
transient is not well controlled.

This problem can be solved by quasi-adiabatic
switching [4] of the QCA array. Quasi-adiabatic
switching has the following steps: (1) before applying
the new input, the height of the interdot barriers is
lowered thus the cells have no more two distinct
polarization states, P=+1 and P=-1. (2) Then the new
input can be given to the array. (3) While raising the
barrier height, the QCA array will settle in its new
ground state.

The quasi-adiabatic switching is based on the
adiabatic theorem, which states that if the change of
the Hamiltonian is gradual enough and the system is
initially in ground state then it will stay in ground state
throughout the whole switching process. Because the
system is minimally excited from the ground state,
dissipation to the environment is very small.

3   The coherence vector formalism

The Hamiltonian for a QCA circuit modeled as
coupled two-state systems [3] is:

(2)

where Eij is the electrostatic coupling between cells i
and j, and γ is the tunneling energy. The first term
describes the intracell tunneling between the two basis
states. The second term describes the electrostatic
coupling between neighbors. The third term describes
coupling to driver cells. For those cells which do not
have a driver cell as a neighbor Pdriver(i)=0.

The charge polarization of the kth cell can be
interpreted as the expectation value of the Pauli

spin matrix: . With the negative sign
we follow the convention of Ref. [6] choosing the sign
of the Pauli spin matrices.

The dynamics of the cell line can be computed
by the Liouville equation giving the time dependence
of the density matrix. The density matrix can be
expressed as a linear combination of the s generating
operators of the SU(2N) group:

. (3)

where

. (4)

The  basis operators have the form:

. (5)

where a term of the Kronecker product can be one of
four single-cell operators:

. (6)

Since choosing only ’s is excluded, there are s=4N-1
’s.

In this paper the vector constructed from the
coefficients of the (3) linear combination, the

coherence-vector [6], will be used for the state
description instead of the density matrix. The
coherence vector can be partitioned into single-
cell coherence vectors, two-point,
three-point etc., correlation vectors. The single
cell coherence vectors contain the expectation values
of the , and single-cell basis
operators. The two-point correlation vector
has nine elements. They are the expectation values of
two-cell basis operators:

. (7)

Similarly, the elements of the three-point correlations
are expectation values of three-cell basis operators:

.(8)

The dynamics of the coherence vector
elements can be obtained by first computing the
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dynamics of the basis operators in the Heisenberg
picture and then taking the expectation values of both
sides of the equations. The differential equation system
is linear and has the form:

, (9)

where is the time dependent coefficient matrix.
Next the structure of the (9) differential equation
system will be presented by giving explicit equations
for the single cell coherence vector elements and two-
point correlations.

The dynamics of a single cell coherence vector
can be obtained as

(10)

where

. (11)

The dynamics of the correlation vectors can be
obtained as[6]:

(12)

where is an expression consisting of coherence
vector elements and three-point correlation vector
elements.

Dynamical equations similar to (12) can be
written for the three-point, four-point, etc. correlation
vector elements. (They are not given here.) The
complete set of these differential equations describes
the dynamics of the multi-cell system equivalently to
the dynamics given by the Liouville equation for the
density matrix. We will refer to the model containing
the whole set of differential equations for the
coherence vector and correlation vector elements as
the exact model in this paper.

Besides the correlation vector there are other
quantities characterizing the intercell correlation. The
correlation vector proper [6] for two cells has nine
elements. They are defined as

. (13)

With coherence vector elements (13) can be rewritten
as

. (14)

The elements of the correlation vector proper are all
zero if there is no correlation between the cells or they
are uncorrelated. The third order correlation vector
proper can be defined similarly to (14) with lower
order correlation vector and coherence vector
elements.

4 Model neglecting higher order
correlation

The Hartree approximation assumes that the
two-point correlation vector proper

elements are zero (see (14)) and approximates the
elements of the two-point correlation vectors with
coherence vector elements using

.
The first approximation, that is better than the

Hartree method, can be obtained [7] by keeping only
the single cell coherence vectors and the two-point
nearest neighbor correlations.

In order to do the truncation of the system of
equations, a formula must be constructed to
approximate the elements of the
nearest neighbor three-point correlation vector with
nearest neighbor two-point correlation vector and
single-cell coherence vector elements. This formula
(not shown here) can be deduced from the assumption
that the three-point correlation
vector proper elements and the next-to-
nearest neighbor correlation vector elements are zero.
Substituting it into the dynamical equations of nearest
neighbor two-point correlations the three-point
correlations can be eliminated. The method based on
this approximation will be called NNPC referring to
that besides the coherence vectors it includes only the
nearest neighbor pair correlations in the state
description of the cell array [7].

The NNPC method is the simplest that is
closer to the exact model with the many-body
Hamiltonian than the Hartree method. The number of

h
td

d Λ Ω̂ t( )Λ=

Ω̂ t( )

h
td

d λ i( ) Ω̂iλ i( )

Eij K yz i j,( ) K xz i j,( )– 0
T
,

j
∑+

=

Ω̂i

0 E0Pdriver i( )– 0

E0Pdriver i( ) 0 2γ

0 2– γ 0

=

h
td

d K i j,( ) 1̂ Ω̂⊗ j Ω̂i 1̂⊗+( )K i j,( )

Cij λ k( ) K l m n, ,( ),{ },+

=
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state variables scales linearly with the system size for
both methods.

The procedure can be generalized. Next-to-
nearest neighbor pair correlations and higher than
second order correlations can be included and it is also
possible to build a model which includes higher order
correlations only for those regions where it seems to be
necessary.

Since the coherence vector formalism is based
on the density matrix description, it is able to model
mixed states unlike the state vector description.
Dissipation and decoherence can be easily included by
adding damping terms to the dynamical equations.
This is true for our approximation, as well.

5   Simulation examples

Computer simulations were made to compare NNPC
with the Hartree approximation and with the exact
model. The comparison was done for the case of quasi-
adiabatic switching of a QCA cell line and of a
majority gate with unequal input legs. We choose units
such that =1 and E0=1.

Figure 2. Adiabatic switching of cell line. λz(2) as the
function of time for the Hartree approximation
(dashed), NNPC (solid), and the exact model (solid).
The inset shows the ∆λz(2)=λz(2)-λz,exact(2) deviation
from the exact dynamics for the Hartree method
(dashed) and NNPC (solid). NNPC gives a result
closer to the exact one than the Hartree approximation
does.

The first simulation example is the quasi-
adiabatic switching of a line of five cells. The first cell
is coupled to a driver cell. The tunneling coefficient is
gradually lowered (the barriers are raised). At the end
(when the barriers are high) all the cells align with the
driver, that is, at the end . Fig. 2
shows a comparison of the λz(2) curves corresponding
to the Hartree approximation, the NNPC, and the exact
model. The inset shows the ∆λz(2) deviation from the

exact dynamics for the Hartree method (dashed) and
NNPC (solid). It is clearly visible that NNPC gives a
better match with the exact model than the Hartree
approximation does.

The NNPC method also gives the
(approximate) dynamics of the nearest neighbor pair
correlations thus it is a qualitative improvement
compared to the Hartree approximation since the
Hartree approximation does not model correlations at
all.

The second simulation example is the majority
gate with unequal input legs. The Hartree method gives
correct results only if the difference in the length of the
input legs is smaller than three. By including the
correlations of the cross region in the model, it is
possible to obtain correct results up to a difference of
39 cells and still use much less degrees of freedom
than the exact model.

6   Conclusions

An intermediate model between the Hartree
approximation and the exact method was constructed
to describe the dynamics of QCA cell arrays. It is
based on the truncation of the system of dynamical
equations obtained from the coherence vector
formalism. By choosing the point of truncation it is
possible to include correlation effects to the desired
order in the dynamics. The first order differential
equation system of real variables obtained this way
makes it possible to construct the circuit theoretical
model of quantum systems[5].
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