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Abstract. We present an experimental and theoretical characterization of the sym-

metric four-qubit entangled Dicke state with two excitations D
(2)
4 . We investigate

the state’s violation of local realism and study its characteristic properties with re-
spect to quantum information applications. For the experimental observation of the
state we used photons obtained from parametric down conversion. This allowed, in
a simple experimental set-up, quantum state tomography yielding a fidelity as high
as 0.844 ± 0.008.

Keywords. Multi-particle entanglement, quantum information

Introduction

Entanglement in bipartite quantum systems is well understood and can be easily quan-
tified. In contrast, multipartite quantum systems offer a much richer structure and vari-
ous types of entanglement. Thus, crucial questions are how strongly and, in particular, in
which way a quantum state is entangled. Consequently, different classifications of mul-
tipartite entanglement have been developed [1,2,3], and quantum states with promising
properties have been identified and studied experimentally [4,5,6,7,8,9]. The ongoing ef-
fort in this direction leads to a deeper understanding of multipartite entanglement and its
applications in quantum communication.

In the following, we present an experimental and theoretical examination of an in-
teresting four-qubit entangled state: D

(2)
4 – the four-qubit Dicke state with two excita-

1Corresponding Author: Christian Schmid, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1,
D-85748 Garching, Germany; E-mail: christian.schmid@mpq.mpg.de.
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Figure 1. Experimental setup for the analysis of the four-photon polarization-entangled state D
(2)
4 . It is ob-

served after the symmetric distribution of four photons onto the spatial modes a,b,c and d via non-polarizing
beam splitters (BS). The photons are obtained from type-II collinear spontaneous parametric down conversion
(SPDC) in a 2 mm β-Barium Borate (BBO) crystal pumped by 600 mW UV-pulses. The phases between the
four output modes are set via pairs of birefringent Yttrium-Vanadate-crystals (YVO4). Half and quarter wave
plates (HWP, QWP) together with polarizing beam splitters (PBS) are used for the polarization analysis.

tions that is symmetric under all permutations of qubits. Generally, a symmetric N -qubit
Dicke state [10,11,12] with M excitations, |D (M)

N 〉, is the equally weighted superposi-
tion of all permutations of N -qubit product states with M logical 1’s and (N − M) log-
ical 0’s. The Dicke states naturally appear as the common eigenstates of the total spin-
squared and the spin z-component (where z is assumed to be the quantization direction)
operators in spin one-half particle systems. Besides the state studied here, another well
known example for a Dicke state is the N -qubit W state |WN 〉 (in the present notation

|D(1)
N 〉) [5]. While other symmetric Dicke states have maximum overall spin, D (2)

4 is the
eigenstate which has minimum spin component along the quantization axis. As we shall
see, this fact leads to a set of interesting properties.

1. Experiment

As photons are well suited to emulate spin one-half systems, we use them as the quantum
system of choice for the experimental observation and characterization of the Dicke state.
Applying polarization encoding, the state D

(2)
4 has the form:

|D(2)
4 〉 =

1√
6
(|HHV V 〉 + |HV HV 〉 + |V HHV 〉 +

|HV V H 〉 + |V HV H 〉 + |V V HH 〉) (1)
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with, e.g., |V V HH 〉 = |V 〉a ⊗ |V 〉b ⊗ |H 〉c ⊗ |H 〉d, where |H 〉 and |V 〉 de-
note linear horizontal (H) and vertical (V ) polarization of a photon in the spatial modes
(a, b, c, d) (Fig. 1). It can be seen as the superposition of the six possibilities to distribute
two horizontally and two vertically polarized photons into four modes. Accordingly, we
create four indistinguishable photons with appropriate polarizations in one spatial mode
and distribute them with polarization independent beam splitters (BS) (Fig. 1) [13]. If
one photon is detected in each of the four output modes we observe the state D

(2)
4 . For

ideal 50:50 BS this occurs with a probability of p ≈ 0.094 and experimentally we find
p ≈ 0.080 [14].

As source of the four photons we use the second order emission of collinear type II
spontaneous parametric down conversion (SPDC). UV pulses with a central wavelength
of 390 nm and an average power of about 600 mW from a frequency-doubled mode-
locked Ti:sapphire laser (pulse length ≈130 fs) are used to pump a 2 mm thick BBO
(β-Barium Borate, type-II) crystal. This results in two horizontally and two vertically
polarized photons with the same wavelength. Dichroic UV-mirrors serve to separate the
UV-pump beam from the down conversion emission. A half-wave plate together with a
1 mm thick BBO crystal compensates walk-off effects (not shown in Fig. 1). Coupling
the four photons into a single mode fiber exactly defines the spatial mode. The spectral
selection is achieved with a narrow bandwidth interference filter (Δλ = 3 nm) at the out-
put of the fiber. Birefringence in the non-polarizing beam splitter cubes (BS) is compen-
sated with pairs of perpendicularly oriented 200 μm thick birefringent Yttrium-Vanadate
crystals (YVO4) in each of the four modes. Altogether, the setup is stable over several
days. Measurement time is thus mainly limited by misalignment effects in the pump laser
system which, however, affects rather the count rate than the quality of the state.

Polarization analysis is performed in all of the four outputs. For each mode we
choose the analysis direction with half (HWP) and quarter wave plates (QWP) and detect
the photons behind polarizing beam splitters using single photon detectors (Si-APD).
The detected signals are fed into a multi-channel coincidence unit which allows to si-
multaneously register any possible coincidence between the inputs. The rates for each
of the 16 characteristic four-fold coincidences were corrected for the different detection
efficiencies in each polarization analysis. This experimental scheme allowed the obser-
vation of the state with about 60 four-fold coincidences per minute. This count rate was
high enough to perform a full quantum state tomography out of which we can deter-
mine the experimental state’s Fidelity to be F = 84.4 ± 0.08% (see Figure 2). The state
tomography provides all the necessary data for any further analysis of the state.

2. Analysis of the state

2.1. Correlations and violation of local realism

For a given sate, there exists a single generalized Bell-type inequality which is the suffi-
cient and necessary condition on the local realistic description of the correlation function
E [15,16,17]. For four qubits we have

1
24

∑
s1,...,s4=±1

∣∣∣∣∣∣
∑

k1,...,k4=0,1

sk1
1 ...sk4

4 E(�a1(k1),�a2(k2),�a3(k3),�a4(k4))

∣∣∣∣∣∣ ≤ 1. (2)
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Figure 2. (a) Plot of the density matrix for the ideal state ρ
D

(2)
4

and (b) the Real part of the density matrix

derived from the measurement data.

This condition corresponds to the experimental situation, in which the observers can
choose between two dichotomic observables with the eigenstates �a i(ki) = cos(θi +
ki

π
4 )|H〉i + eiφi sin(θi + ki

π
4 )|V 〉i, (i = 1, 2, 3, 4). The above inequality is satisfied if

and only if [17]

max
α1,...,α4

{ ∑
l1,...,l4={x,y}

|Tl1l2l3l4 | sin(α1 + l1
π

2
)... sin(α4 + l4

π

2
)
} ≤ 1, (3)

where T̂ is the correlation tensor in any set of local Cartesian coordinate systems. The
components of T̂ are given by Tl1l2l3l4 = E(�xl1 , �xl2 , �xl3 , �xl4), where �xlk , (lk = 1, 2, 3)

represent some set of (local) basis vectors for the kth observer. For the state D
(2)
4 the

correlation tensor has the following non-vanishing coefficients in the standard basis:

Txxxx = Tyyyy = Tzzzz = 1;

Txxyy = Txyxy = Txyyx = Tyxxy = Tyxyx = Tyyxx = 1/3;

Txxzz = Txzxz = Txzzx = Tzxxz = Tzxzx = Tzzxx = −2/3;

Tzzyy = Tzyzy = Tzyyz = Tyzzy = Tyzyz = Tyyzz = −2/3. (4)

Ideally, D(2)
4 violates inequality (3) by a factor 2.1213. However, the state observed

in an experiment is never pure. Therefore it is interesting how robust the state is with
respect to admixture of white noise. With the corresponding state, v|D (2)

4 〉〈D(2)
4 |+ (1−

v)11/16, we can derive a measure for that robustness, which is called the critical visibility
vcrit. That means that for v > vcrit

D
(2)
4

no local realistic description of the state exists. For

D
(2)
4 we obtain vcrit

D
(2)
4

= 0.4714. This result was found using a numerical procedure. In

addition we used also the more general method of linear optimization [18] to test the
possibility of the quantum probabilities to be describable by a local realistic model. The
critical visibility obtained in this method is equal to the 4-digit approximation of v crit

D
(2)
4
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obtained from (3). In [19], it was shown that the amount of the violation of the Bell
inequality [20] can be used for the detection of N -particle entanglement in a multi-qubit
quantum system. In the case of inequality (3) the threshold for four-particle entanglement
is equal to 2. If any quantum state violates this inequality by a factor larger than 2, then it
contains true four-particle entanglement. In the experiment, for a spectral filtering of the
photons to a bandwidth of 3 nm, a violation of inequality (3) was achieved of 1.75±0.08,
which is not sufficient to proof four-partite entanglement. By stronger filtering of the
photons to a width of 2 nm we reach a violation of 2.03± 0.21, which is just at the limit.
However, one can use a more sensitive inequality introduced in [21]. This inequality
assumes a rotational invariant form of the quantum correlation function. For four qubits
it has a form:

(EHV , E) ≤ 44Emax, (5)

where (, ) represents the scalar product of a real Hilbert space of square integrable func-
tions, EHV is a local realistic correlation function, E is the quantum correlation function
and Emax is the maximal possible value of the correlation function E for a given state.
In the case of local and realistic theories, the correlation function for four qubits must be
given by:

EHV (�a1(α1), ...,�a4(α4)) =
∫

dλρ(λ)
4∏

i=1

Ii(αi), (6)

where ρ(λ) is a certain distribution function of some hidden parameters λ, and I i =
±1 is a function, that predetermines the values of the experimental results that can be
performed on the given local system. Finally α i is a certain parametrization of the local
setting�ai. The four qubit quantum correlation function, which has a rotationally invariant
form, can be expressed in the following way

E(�a1, ...,�a4) = T̂ ◦ (�a1 ⊗ ... ⊗ �a4), (7)

where T̂ is the correlation tensor for a quantum state, ρ. By the symbol ◦ we represent
the scalar product in R

12. If we constrain the measurement settings of each observer to
one plane the measurement direction vectors can be expressed by �a i(αi) = cosαiŷi +
sin αix̂i, where x̂i, ŷi are two basis vectors of R

3 (which can be individually defined by
each observer). In such a case, the correlation function is a scalar given by:

E(α1, ..., αN ) =
∑

i1...i4=1,2

Ti1i2i3i4 sin (α1 + (i1 − 1)
π

2
)

× ... sin (α4 + (i4 − 1)
π

2
). (8)

The inequality (5) can be violated by the quantum value equal to

(E, E) = π4
∑

i1,...,i4={x,y}
T 2

i1i2i3i4 (9)
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The violation factor is equal to v = (E, E)/(EHV , E). In [22] it was shown that the
threshold, above which four-partite entanglement is confirmed equals to 4(π/4) 4 ≈
1.52202. For the experimental data taken with a 2 nm interference filter we obtain
v = 1.66 ± 0.13, which is sufficient to show that the state contains four-qubit entangle-
ment. Consequently if one aims at obtaining information on the violation of local realism
and true multi-partite entanglement simultaneously the latter type of Bell inequality is
preferable.

2.2. Genuine four qubit entanglement

The well-established tool for the test of genuine multi-partite entanglement are usually
witness operators, albeit they do not provide any information concerning the local real-
istic description of a state. One might use the generic form W g [23] in which the cor-
responding expectation value depends directly on the observed fidelity: Tr(W gρexp) =
2
3 − Fexp = −0.177 ± 0.008 and is positive for all biseparable states. For D

(2)
4 , 21

measurement settings, instead of a complete tomography, are sufficient to determine this
value. They correspond to the 21 non-vanishing coefficients of T̂ in the standard basis
(see equation (4)).

Due to the high symmetry of this state, genuine four-partite entanglement can be
detected with only two settings via a measurement of the collective spin squared in x-
and y- direction (〈J 2

x〉 and 〈J2
y 〉). For biseparable states it can be proven that [24,25]

〈Ws
4〉 = 〈J2

x〉 + 〈J2
y 〉 ≤ 7/2 +

√
3 ≈ 5.23, (10)

where Jx/y = 1/2
∑

k σk
x/y with e.g., σ3

x = 11 ⊗ 11 ⊗ σx ⊗ 11. This can be interpreted

also by rewriting 〈J 2
x〉+ 〈J2

y 〉 = 〈J2〉 − 〈J2
z 〉 where J = (Jx, Jy, Jz). As for symmetric

states 〈J2〉 = (N/2 + 1)N/2 our criterion requires 〈J 2
z 〉 ≥ 5/2−√

3, i.e. the collective
spin squared of biseparable symmetric states in any direction cannot be arbitrarily small
[26]. For the state D

(2)
4 , however, 〈J 2

z 〉 = 0 and thus the expectation value of the witness
operator in Eq. 10 reaches the maximum of 6. Via measurement of all photons in (±45)-
and (L/R)-basis respectively we find experimentally the value Tr[W s

4ρexp] = 5.58±0.02
clearly exceeding the bound of biseparable states. Multipartite entanglement is, thus, de-
tected by studying only a certain property of the state. This makes the entanglement wit-
ness much more efficient. In principle, the witness works even without individual ad-
dressing of qubits. In particular for experiments on multi-photon entanglement, one re-
lies on coincidence detection and therefore usually suffers from low count rates caused
by limited detection efficiencies. Thus economic tools, like the two-setting witness op-
erator, which offer a maximum gain of information on a quantum state by a minimal
number of measurement settings are important.

2.3. Residual state after loss or measurement of single qubits

Let us continue the investigation of properties that make D
(2)
4 special in comparison

with the great variety of other four-qubit entangled states. The various states show great
differences in the residual three-qubit state dependent on the measurement basis and/or
result: for example, |GHZ4 〉 [7] can either still render tripartite GHZ like entanglement
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or become separable, |W4 〉 as well, but the tripartite entanglement will always be W
type. Entanglement in the cluster state |C4 〉 [6] cannot be easily destroyed and at least

bipartite entanglement remains. However, |Ψ (4) 〉 [9,27] and, as described next, D
(2)
4

yield genuine tripartite entangled states independent of the measurement result and basis,
i.e. also under loss of the qubit.

Let us compare the projection of the qubit in mode d onto either |V 〉 or |− 〉 for the

state D
(2)
4 :

d〈V |D(2)
4 〉 =

1√
3
(|HHV 〉 + |HV H 〉 + |V HH 〉),

d〈−|D(2)
4 〉 =

1√
6
(|HHV 〉 + |HV H 〉 + |V HH 〉

−|HV V 〉 − |V HV 〉 − |V V H 〉). (11)

The first is the state |W3 〉 [4] and the second one is a so-called G state (|G3 〉 Ref. [28]).
Experimentally we observe these states with fidelities FW3 = 0.882± 0.015 and FG3 =
0.897 ± 0.019 . Comparable values are observed for measurements of photons in other
modes.

The criterion (10) adopted to the three-qubit case, can now be used to detect the
tripartite entanglement around |W3 〉 and |G3 〉 with the bound 〈W s

3 〉 = 〈J2
x〉 + 〈J2

y 〉 ≤
2 +

√
5/2 ≈ 3.12. Our measurement results for |W3 〉 and |G3 〉 are Tr

[Ws
3ρG3

]
=

3.34 ± 0.03 and Tr
[Ws

3ρW3

]
= 3.33 ± 0.03 respectively, which proves both states

contain genuine tripartite entanglement.

3. Possible applications

What kind of tripartite entanglement do we observe? The answer to that question takes
us directly to a possible application of the Dicke sate. Fascinatingly, the class of tri-
partite entanglement depends on the measurement basis. While the W state represents
the W class, the state |G3 〉 belongs to the GHZ class. This is remarkable: GHZ and
W class states cannot be transformed into one another via SLOCC [1] and not even by
entanglement catalysis [29]. D(2)

4 , however, can be projected into both classes by a local
operation, i.e., via a simple von Neumann measurement of one qubit. This also implies
that there is no obvious way how to obtain D

(2)
4 out of either of those three-qubit states

via a 2-qubit interaction with an additional photon, as this would directly give a recipe
to transform one class of three-qubit entanglement into the other. As the experimentally
observed states are not perfect we also have to test whether the observed state |G 3 〉 is
GHZ class. To do so, we construct an entanglement witness from the generic one for pure
GHZ states, WGHZ3 = 3

411 − |GHZ3 〉〈GHZ3 |, by applying local filtering operations

F̂ = A ⊗ B ⊗ C. The resulting witness operator is then W ′ = F̂ †WGHZ3 F̂ [30,5].
Here A, B and C are 2×2 complex matrices determined through numerical optimization
to find an optimal witness for the detected state. Note, that W ′ still detects GHZ type
entanglement as F̂ is an SLOCC operation. In the measurement GHZ type entanglement
is indeed detected with an expectation value of Tr(ρGW ′) = −0.029 ± 0.023 proving
that the observed state is not W class.
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Entanglement in D
(2)
4 is not only persistent against projective measurements but also

against loss of photons. The state ρabc after tracing out qubit d is an equally weighted
mixture of |W3 〉 and |W3 〉, which is also tripartite entangled. Applying witness W s

3 we
obtain Tr

[Ws
3ρabc

]
= 3.30 ± 0.01, proving clearly the genuine tripartite entanglement.

The fidelity with respect to the expected state is Fabc = 0.924±0.006, similar values are
reached for the loss of the photons in modes a, b and c.

As we have seen, the loss of one photon results in a three-qubit entangled W class
state. Thus, the persistency against the loss of a second photon should also be high [27].
It is known that the state |W4 〉 is the symmetric state with the highest persistency against
loss of two photons with respect to entanglement measures like the concurrence [1,11].
In contrast, it turns out that for D

(2)
4 the remaining two photons have the highest possible

maximal singlet fraction [31] (MSF
D

(2)
4

= 2/3, experimentally MSFexp = 0.624 ±
0.005). This means that the residual state is as close to a Bell state as possible. It was
already pointed out in Refs. [27,31] that this is a hint for the applicability of a state in
telecloning [32]. Four parties that share the state D

(2)
4 can use the quantum correlations

in each pair of qubits as a quantum channel for a teleportation protocol. Thus, each party
can distribute an input qubit to the other parties with a certain fidelity, which depends
on the MSF. Using D

(2)
4 as quantum resource this so-called 1 → 3 telecloning works

with the optimal fidelity allowed by the no-cloning theorem. Averaged over arbitrary
input states the fidelity is Fclone

1→3 = 0.788 and the optimal so-called covariant cloning
fidelity is Fcov

1→3 = 0.833 for all input states on the equatorial plane of the Bloch sphere
(i.e. all states 1√

2
(|H 〉+exp(iφ)|V 〉)). Assuming perfect cloning machines, the fidelity

obtained by using the experimentally observed state for the protocol would be F expclone
1→3 ≈

0.75 and Fexpcov
1→3 ≈ 0.79 in the covariant case. Note that for the experimentally observed

state also the latter value is not independent of φ and varies between 0.81 and 0.77 for
φ ∈ [0, 2π].

What if the receiving parties decide that one of them should get a perfect version of
the input state? Probabilistically this is still possible, if the other two parties abandon their
part of the information by a measurement of their qubit in the same direction, say (H/V).
In case they find orthogonal measurement outcomes the sender and the only remaining

receiver share a Bell state cd〈HV |D(2)
4 〉 = 1√

3
(|HV 〉 + |V H 〉) =

√
2
3 |ψ+ 〉ab. This

enables perfect teleportation in 2/3 of the cases and therefore, as each party could be
the receiver, an open destination teleportation (ODT) [8]. The experimentally obtained

fidelity of the two photon states in this case was F ψ+

HcVd
= 0.883 ± 0.028. For other

measurement directions different Bell states can be obtained. For example for projections

onto the (±45)- and (L/R)-basis we found F φ+

+c−d
= 0.721 ± 0.043 and F φ−

RcLd
=

0.712±0.042. Note that, in contrast to the deterministic GHZ based ODT protocol, D (2)
4

allows to choose between telecloning and ODT.
Finally, as another possible application, we also note that D

(2)
4 is the symmetric

Dicke state which can be used in certain quantum versions of classical games [33]. In
these models it might offer new game strategies compared to the commonly used GHZ
state.
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Conclusion

In conclusion we have presented the experimental observation and analysis of a quan-
tum state D

(2)
4 , obtained with a fidelity of 0.844 ± 0.008 and a count rate as high as 60

counts/minute. The setup and methods used are generic for the observation of symmetric
Dicke states with higher photon numbers as well. Our analysis focused on the state’s vio-
lation of local realism and the particular properties that make the Dicke state suitable for
several quantum information applications. As was shown, the two inequivalent classes
of genuine tripartite entanglement can be obtained from the Dicke state after projection
of one qubit in different bases. The possibility to project two photons into a Bell state
makes D

(2)
4 a resource for an ODT protocol. Further, the state has a high entanglement

persistency against loss of two photons. In this case, the singlet fraction of the remaining
photons is maximal and from this we inferred applicability of the state for quantum tele-
cloning. We believe that due to the extraordinary properties of the state other applications
are likely in the future.
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