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Abstract. We investigate the presence of multipartite entanglement in
macroscopic spin chains. We discuss the Heisenberg and the XY model and derive
bounds on the internal energy for systems without multipartite entanglement.
Based on this we show that in thermal equilibrium the above-mentioned
spin systems contain genuine multipartite entanglement, even at finite modest
temperatures.
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1. Introduction

The study of entanglement in condensed matter systems has become a major line of research
in quantum information science. In these studies, different aspects of entanglement have been
investigated. Firstly, by investigating the entanglement in the reduced state of two qubits in a
spin chain, it has been shown that entanglement theory can help to understand the physical
properties of systems undergoing quantum phase transitions [1]. A slightly different approach
studies the entanglement between two qubits which can be generated by local operations on the
remaining qubits, the so-called localizable entanglement [2]. A third field of study investigates
the entanglement between a block and the remaining qubits in the ground state. The entanglement
can be quantified by the entropy of the reduced state and then the question arises, whether the
entanglement scales like the surface of the block [3]. Furthermore, the insights from entanglement
theory made it possible to understand the limits of known simulation techniques (like the
density matrix renormalization group) in condensed matter physics as well as the design of
new techniques which are superior to the ones known before [4]. Finally, it has been shown
that macroscopic properties of solids can be related to entanglement properties of microscopic
degrees of freedom, allowing for a detection of entanglement in macroscopic objects by observing
macroscopic observables [35, 6]'.

In all of the research lines specified above, entanglement was studied as a bipartite
phenomenon; the investigation of multipartite entanglement in spin chains has only a limited
literature [7, 8]. In entanglement theory, however, multipartite entanglement has been intensively
studied and it is known that quantum correlations in the multipartite setting have a much richer
structure than in the bipartite setting [9, 10]. The main results known are for three or four
particles; results for large ensembles of particles are still rare. Nevertheless, studying multipartite
entanglement in large systems can already benefit from the results for small systems in two
respects. Firstly, on a more local scale, one can pick up sub-ensembles of three or four particles
and investigate the multipartite entanglement of the corresponding reduced state. Secondly, on
a more global scale, one can ask what types of multipartite entanglement are necessary to form
a given state of the total system.

In this paper, we investigate multipartite entanglement in macroscopic spin systems. The
tool we use is similar to the one introduced in [5]: we derive bounds for the internal energy
U = (H) which have to hold for states without multipartite entanglement, violation of these
bounds implies the presence of multipartite entanglement in the system. We investigate in detail
two one-dimensional spin models: the Heisenberg model and the isotropic XY model. Our
results lead to the insight that for these models even at modest temperatures the correlations
cannot be explained without assuming the presence of genuine multipartite entanglement.
However, we would like to stress that in our approach we do not assume that the spin system
is in the ground state or in a thermal state; our theorems can also be applied to states out of
equilibrium.

Our paper is organized as follows: In section 2, we introduce the basic definitions
of multipartite entanglement we want to apply to spin systems. We first recall the notion
n-separability and genuine multipartite entanglement. Then, we also introduce the notion

! In these works, the conclusion that the state is entangled relies on the assumption that the model for the physical
system 1is valid. Strictly speaking, one proves the existence of entanglement in a certain model of statistical
mechanics.
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of k-producibility, which is well suited for the investigation of multipartite entanglement in
macroscopic systems. In section 3, we apply these terms to the anti-ferromagnetic Heisenberg
chain. We calculate energy bounds below which either reduced states are genuine multipartite
entangled or the total state requires multipartite entanglement for its creation. This shows
that already at temperatures of k7T ~ J the effects of multipartite entanglement cannot be
neglected. In section 4, we demonstrate that our proofs also work for other models by calculating
similar thresholds for the XY model. Finally, we summarize our results and name some open
problems.

2. Notions of multipartite entanglement

Let us start by clarifying the terms we will use to classify multipartite entanglement in spin
chains. For a pure state |{/) of a quantum systems of N parties we may ask for a given n < N,
whether it is possible to cluster the parties into n groups, such that |¢) is a product state with
respect to this partition,

V) = 11) ®42)® - - - B|hy). )

If this is the case, we call the state |i) n-separable. A state which is N-separable is a
product state with respect to all subsystems, these we call fully separable. If a state is
not two-seperable (biseperable), we call it genuine N-partite entangled. For a mixed state
described by a density matrix o these terms can be extended through convex combination.
If we can write 0 = ), p;|¥:)(¥:| with p; > 0, Y. p; = 1 and n-separable |y;) we call o n-
separable. Physically, this means that a production of o requires only n-separable pure states and
mixing?.

Besides asking for n-separability, we may also ask questions like ‘Do two-party entangled
states suffice to create the mixed state o?” This leads to the following definition. We call a state
|vr) producible by k-party entanglement (or k-producible, for short) if we can write

V) = 1¢1) ®[2)D - - - O|p), )

where the |¢;) are states of maximally k parties. So, in this definition m > N/ k has to hold. This
definition means that it suffices to generate specific k-party entanglement to arrive at the state
|v). Conversely, we call a state containing genuine k-party entanglement if it is not producible
by (k — 1)-party entanglement. This definition can be extended to mixed states as before via
convex combinations. Again, a mixed state which is k-producible requires only the generation
of k-party entangled states and mixing for its production. Consequently, a mixed state o contains
k-party entanglement, iff the correlations cannot be explained by assuming the presence of
(k — 1)-party entanglement only.

2 Note that a mixed state o = > pilwi) (Y] can usually be written as a convex combination in many ways. Thus a
state which was generated by mixing entangled states might nevertheless be separable, since on may create the same
state also by mixing separable states. Note also that for an n-separable state o the states |1/;) may be n-separable
with respect to different partitions.
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Obviously, there are some relations between the notions of k-producibility and n-
separability. For instance, the states containing N-party entanglement are just the genuine
multipartite entangled states and the one-producible states are the fully separable states.
Furthermore, a state of which some reduced state of m parties is genuine m-partite entangled,
contains m-partite entanglement, while the converse is in general not true’.

In the thermodynamic limit N > 1, however, the notion of n-separability for the total system
becomes problematic. This is mainly due to two reasons. Firstly, it does not take into account
how many particles are entangled. A biseparable state can be a product state for two partitions
of equal size or just one qubit might be separated from a large genuine multipartite entangled
state; these cases are not distinguished. Secondly, statements about n-separability require the
exact knowledge of N—a precondition which is usually not fulfilled in realistic situations. In
stark contrast, the notion of k-producibility is designed to be sensitive to the question ‘How many
qubits are entangled?’ Also, deciding whether a state is k-producible does not require the exact
knowledge of N. If one controls only k& << N subsystems, one may still conclude that the total
state contains k-party entanglement, e.g. if the reduced state is genuine k-party entangled.

3. The Heisenberg model

Let us start the discussion of spin models with the anti-ferromagnetic isotropic Heisenberg
model. Here, we assume a one-dimensional chain of N spin 1/2 particles with periodic boundary
conditions. The Hamiltonian of this model is given by

N
Hy =1 00600 4+ 60600 4 g0, 3)
i=1

where o denotes the Pauli matrix o,, acting on the ith qubit and J > 0 the coupling between
the spins. For simplicity, we assume that /N is even. For completeness, we always mention also
known results for fully separable states [5, 7]. We have the following theorems:

Theorem 1. Let o be an N qubit state of a system described by the Heisenberg Hamiltonian
in equation (3). If

(Hy) < —JN =: Cp, 4)
there exists two neighbouring qubits i and i + 1 in the chain such that the reduced state g; ., is
a two-qubit entangled state. Furthermore, if

1+«/§
2

(Hy) < — JN ~ —1.618JN =: Cgs (5)

then there exist three neighbouring qubits i, i + 1 and i + 2 such that the reduced state Q; 1 i+2
of these qubits is genuine tripartite entangled.

Proof. It suffices to prove these bounds for pure states. To prove first equation (5), we write
Hy/J = Wiz + Was + Wsgr + -+ with Wi = oPol + a)(,’)a}(/) +00c) + 0V 4 o;/)aﬁk)
+0Po®. The idea is to view W, as entanglement witnesses, detecting genuine tripartite

3 This follows from the fact that there are three-qubit states which are separable for each fixed partition but not fully
separable [10]. These states contain two-party entanglement, however, any reduced two-qubit state is separable.
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entanglement on the qubits 7, j and k. Let us denote x; = (o), x;x; = (6”0} etc and consider
a biseparable state |[V/) = [@;)|¢j). We have [(Wip)| = [x; - xj+yi -y +2i - 2+ XjXpe + Yy +
zjzkl < /X5 + Y7+ 25+ |xx + ¥y + 2z For the two-qubit state [¢), the first term is the
purity of the reduced state and invariant under local unitaries, while the second is maximal, when
the 3 x 3 correlation matrix A, = u ;v for u, v = x, y, z is diagonal. Expressing a general state
in this form (see equation (14)in[11])leads to [(W)| < 1 + V/3. Since there are N/2 of the Wiy,
equation (5) implies that one of the reduced three-qubit states cannot be biseparable. Finally,
equation (4) can be proved similarly, using |x; - x; +y; - y; + z; - z;| < 1 for separable two-qubit
states [5, 7]. O

Theorem 2. Let o be an N qubit state as in theorem 1. If o is one-producible, then
(Hu) 2 —JN =: Cc2 (6)
holds, while for two-producible states

3
(Hy) = _EJN =: Cc3 (7)
holds. Thus, if (Hy) < Ccs the state contains genuine tripartite entanglement.

Proof. The bound equation (6) follows from equation (4) and has already been derived in [5, 7].
Let us first consider a two-producible pure state, where neighbouring spins are allowed to be
entangled. i.e., we have a state of the type |{) = |¢12)|@34) - - - |¢n—1.n), Where the state |¢;2)
is a state of the qubits 1 and 2, etc. Let us define for the state |¢) two vectors with 6N real
components each, via

vy i= ([0, [1 2 2], [2], [1], [5], [5 : 6], [6], ..., [1]),

(8)
vy :=([N], [, [3], [3 : 41, [4], [1], [7], ..., [N — 1 : NJ),

where the symbols [---] stand always for three entries, namely [i] = x;, y;, z;, [i: j] =
xiXj, yiyj, ziz; and [1]1 = 1,1, 1. Since the v; have 6N entries, in v; (and similarly for ,)
some coefficients (like x;) may appear twice, namely iff N € Z. It is straightforward to see
that for the given state 2 - (Hy) = Ju; - U, holds. Now, we need x = x7 + y? + 27 + (xix;11)* +
(yiyis1)? + (zizis1)* + X5, + Y2, + 22 < Xmax = 3, which holds for any two-qubit state o,
due to (1 + x)/4 < Tr(0®) < 1. Based on that, we have ||[9;]|*> < (N/2)(Xmax +3) = 3N. The
same bound holds for ||9,]|%. So, due to the Cauchy—Schwarz inequality we have |(Hpy)| <
1/2J1191] - |v2]l < 3/2JN which proves the claim.

Now, we have to consider arbitrary two-producible states. A general two-producible pure
state is always a tensor product of two-qubit states |¢;;) of the qubits i and j and single-qubit
states |¢). If for one of the two-qubit states |¢;;) the qubits i and j are not neighbouring, we can
replace it by two one-qubit reduced states o; ® g, since in this case, the Hamiltonian is only
sensitive to the reduced states. Furthermore, if two neighbouring single-qubit states |¢;) ® |¢;),
appear, we replace them by |¢;;), since |¢;;) is allowed to be separable.

Thus, it suffices to prove the bound for a state where entanglement is only present between
neighbouring qubits and the single-qubit states are isolated in the sense that if |¢;) appears,
then |¢¢—1) and |@.1) do not appear, e.g. [) = [§12)|h3)|Pas) |Pe7)|¢s). Let M be the (even)
number of isolated qubits. We can associate to any isolated qubit one neighbouring two-qubit
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state (on the left or right) to form a three-party group. There is an ambiguity in doing that,
and we can choose the three-qubit groups in such a way that the number of two-qubit groups
between the three-qubit groups is always even. Then, the state can be viewed as a sequence
g1, &2, &3, 84 . .. of M three-party groups and (N — 3M)/2 two party groups, all in all there are
(N — M) /2 groups. We can double this sequence by setting gv—um) 2+« = &« etc. In the example,
this grouping can be (12), (345), (678), (12), (345), (678). Now, we define the vectors v; and v,
as follows: v; collects terms from g;, g3, gs . . . while v, consists of terms from g, g4, . . . In detail,
we have

El = ([gl]v [gl |g2]9 []1]’ [ngg}], [g3]’ [g3|g4]7 [ﬂ]’ .. ')v (9)
1_52 = ([]1]’ [g1|g2]7 [gZ]v [g2|g3]’ []1]’ [g3|g4]a [84], . ')’

where [g] denotes the three terms x;x;, y;y; and z;z; if g; is a two-qubit group and corresponds
to the four terms x;x;, y;y;, zizj and (x;x; + y;yx + z;zx) when gy is a three-qubit group with the
isolated qubit k. [g;]g>] etc denotes the coupling terms between the groupings g, and g, in the
Hamiltonian, e.g. x;, y;, z; for vy and x;,1, y;41, Zi41 for v, or vice versa. The symbol [1] denotes
a sequence of three or four times ‘1°, depending on whether in the other vector there is a two- or
a three-qubit group.

Again, we have 2 - (H) = Jv; - U, and it remains to bound ||v;||>. Firstly, note that by
construction v; and v, contain the same number of two- and three-qubit groups, namely
(N —3M)/2 two-qubit groups and M three-qubit groups each. Also, both contain 3(N —
3M)/2 +4M times the ‘1’. Then, note that for states of the type |) = |¢;;)|¢«) the bound
X2y (x )+ i)+ @iz (xjxe Y e+ 2 ) x4 yE+ 20 < 5is valid.
So we have ||;[|> < (4 +5)M + (3 +3)(N —3M)/2 = 3N, which proves the claim. O

I?

To start the discussion, first note that the bounds in equations (6, 7) are sharp. Equation (7)
is saturated for the singlet chain |) = |7 )| ™) --- [ ™) where |¢~) = (|01) — |10))/\/§.

In general, any energy bound (Hy) > Cyx corresponds to a certain temperature Tx. Below
this temperature the state has with certainty some degree of entanglement. Corresponding to
the equations (4)—(7) there are thus the temperatures Ty, Tg3, Tc» and T¢3 below which either
reduced states of two or three parties are entangled or the total state contains two- or three-party
entanglement. Obviously, Try = T¢y > Tc3 > Tgs has to hold here.

Let us estimate these temperatures. For small N one can solve the Heisenberg model by
diagonalizing Hy numerically*. Then, the threshold temperatures can directly be computed.
Results are shown in figure 1. As expected, the values for T¢, = Tk, coincide with the ones in
[7]. The given values for T¢3 and Tg; show that in the Heisenberg chain of ten spins at k7 ~ J
multipartite entanglement plays a role, namely at least one reduced state is a genuine tripartite
entangled and the total state contains tripartite entanglement.

In the thermodynamic limit N > 1 the ground-state energy of the Heisenberg model is
knowntobe Eg/N = —J(4In2 — 1) &~ —1.773 J [13]. Thus three qubits can be found such that
their reduced state is genuine tripartite entangled. One can infer from numerical calculations [14]
that the threshold temperatures are determined by kT3 =~ 1.61J and kTx; &~ 1.23 J in agreement
with the values of the ten-qubit Heisenberg chain.

4 Alternatively, one may also use the Bethe ansatz to derive the thermodynamic properties [12].
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Temperature [KT/J]
o == N W & O O N ©

2 4 6 8 10
Number of qubits

Figure 1. Threshold temperatures T3, T and T¢3 for small Heisenberg chains
up to ten qubits. See text for details.

Finally, note that our results also shed light on the characterization of the ground state
itself. For instance, they show that the ground state cannot be a GHZ state since for that state the
reduced three-qubit states are separable. Finally, note that when a state is translationally invariant,
equation (5) guarantees that all reduced three-qubit states are genuine tripartite entangled.

4. The XY model

Let us now investigate the isotropic XY model. The Hamiltonian of this model is given by
— (1) 5 (i+1) (1) 5 (i+1)
HXY_JZOx o, +o 0 (10)
i

Again, we assume periodic boundary conditions and an even number of spins. For this model
we have:

Theorem 3. Let o be an N qubit state whose dynamics is governed by the Hamiltonian in
equation (10). If o is one-producible, then

(Hxy) =2 —JN (11)

holds. If (Hyy) < —JN thisimplies that there are two neighbouring qubits such that their reduced
state is entangled. For two-producible states

9
(Hxy) > —ng (12)

holds. If (Hxy) < —9/8JN the state contains thus tripartite entanglement and if

1+4/2
2

(Hyy) < — JN ~ —1.207JN, (13)

then there are three neighbouring qubits such that their reduced state is genuine tripartite
entangled.
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Proof. The proofs for the XY model are similar to the ones for the Heisenberg model, so we can
make it short. equation (11) can be proved in the same manner as in the Heisenberg model [5].
Now, let us first show the bound (12) for a state of the type |Y/) = |¢12)|P34) - - - |Pn—1.n)- Again,
we define two vectors v; and v,, now with 4N entries via v, := ([1], [1 : 2], [2], [1], [5], [5 : 6],
[(6],[1],...,[01]) and v, := ([N],[1],[3],[3:4],[4],[1],[7),[7:8],...,[N—1:NJ],
where now [i]=x;,y;, and [i:jl=aBis, @B, and [1]=a ' a! with o= .4/3
and B;; = (x;x;+yiy;)/2. Again, we have 2(Hxy) = J0, -V, and due to the fact that
xF+yP+ 20:2,321. + y? +x§ < Enax = 3, we have that ||0;]|> < N/2(Emax + 2/0?) = 9/4N, which
proves the claim. General two-producible states can be treated as shown in the proof of theorem
2, now for states of the type ;) ® [y) the bound x7 + y7 + 20787 + &*(x; - xi + y; - yi)* +
Vi +xp S X7+ 7 +20°67 + o’ (x5 + y7) + 1 < 9/2 must be used. Finally, equation (11) can be

proved as equation (5), using ,/x3 + y5 + |x;xc + y;yel < 1+ V2. O

Firstly, note that again the bounds in equations (11), (12) are sharp. In equation (12) equality
holds for the state |) = |¢12)[¢34) - - - [@n—1,n) Where [ 1) (@i 1| = 1/4- (1O 1 — 0, ® 0, —
1/2 - [o,®0y+0,®0,] — \/5/2 -[1 ® o, — o, ®1]) for all odd i. This corresponds to a chain
of non-maximally entangled two-qubit states. This also motivates the definition of « and B; ; in
the proof of equation (12). « and B; ; were chosen such that for the state |/) we have v; = vy,
thus the Cauchy—Schwarz inequality is sharp.

In the thermodynamic limit the XY model is exactly solvable [15]. The ground-state energy
is Egy/N = —4J/wr ~ —1.273 J. Thus, the ground state contains tripartite entanglement and
fulfils the condition of equation (13). Furthermore, the results of [15] imply thatif k7 < 0.977 J,
the mixed state contains tripartite entanglement and if k7 < 0.668 J, some reduced state is
genuine tripartite entangled.

5. Conclusion

In conclusion, we have shown for two important spin models that the internal energy can be
used as a signature for the presence of multipartite entanglement in these models. Based on
this, we computed threshold temperatures below which any realistic description of the system
cannot neglect the effects of multipartite entanglement. Our results may stimulate the research
on entanglement in phase transitions, since they suggest the use of multipartite entanglement
measures as a tool for the investigation of phase transitions in these regimes [16].

A natural continuation of the present work is the extension of the theorems presented
here to other spin systems, e.g. higher dimensional or frustrated systems. Furthermore, it is very
tempting to analyse the results of performed experiments whether they can be interpreted as giving
evidence for multipartite entanglement, as has similarly been done for bipartite entanglement®.
Here, we leave this as an open problem.

> See [17]. Note, however, that the system investigated there can be described well by a two-producible state, thus
it is not suitable for the search for multipartite entanglement.
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