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Abstract. We present general numerical methods to construct witness
operators for entanglement detection and estimation of the fidelity. Our methods
are applied to detecting entanglement in the vicinity of a six-qubit Dicke state
with three excitations and also to further entangled symmetric states. All our
witnesses are designed to keep the measurement effort small. We also present
general results on the efficient local decomposition of permutationally invariant
operators, which makes it possible to measure projectors to symmetric states
efficiently.
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1. Introduction

Entanglement plays a central role in quantum mechanics and in quantum information
processing applications [1]. Moreover, it is also the main goal in today’s quantum physics
experiments aiming to create various quantum states [2]. For example, entanglement
has been realized with photonic systems using parametric down-conversion and conditional
detection [3]–[9], with trapped cold ions [10]–[12], in cold atomic ensembles [13], in cold
atoms in optical lattices [14] and in diamond between the electron and nuclear spins [15].
These experiments aimed at creating entangled states. Entanglement makes it possible for some
quantum algorithms (e.g. prime factoring, searching in a database) to outperform their classical
counterparts. Entangled particles are needed for quantum teleportation and other quantum
communication protocols. Moreover, the creation of large entangled states might lead to new
insights about how a classical macroworld emerges from a quantum microworld.

In a multi-qubit experiment, typically the full density matrix is not known, and only few
measurements can be made, yet one would still like to ensure that the prepared state is entangled.
One possibility is applying entanglement witnesses [16, 17]. These are observables that have a
positive expectation value for separable states, while for some entangled states their expectation
value is negative. Since these witness operators are multi-qubit operators, they typically cannot
be measured directly and must be decomposed into the sum of locally measurable operators,
which are just products of single-qubit operators [4, 18, 19].

For many quantum states, like the Greenberger–Horne–Zeilinger (GHZ, [20]) states and
the cluster states [21] such a decomposition of projector-based witness operators seems to be
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very difficult: the number of terms in a decomposition to a sum of products of Pauli matrices
increases rapidly with the number of qubits. However, practically useful entanglement witnesses
with two measurement settings can be constructed for such states [5, 22]. It also turned out that
there are decompositions of the projector for GHZ and W states in which the increase with the
number of qubits is linear [23].

However, optimal decomposition of an operator is a very difficult, unsolved problem.
Moreover, in general, it is still a difficult task to construct efficient entanglement witnesses for
a given quantum state. For that, typically we need to obtain the maximum of some operators for
product states. In most of the cases, we would like to detect genuine multipartite entanglement.
For that, we need to obtain the maximum of these operators for biseparable states, which is
again a very hard problem.

In this paper, our goal is to design witnesses that make it possible to detect genuine
multipartite entanglement with few measurements, and also to estimate the fidelity of an
experimentally prepared state with respect to the target state. Here three strategies are applied
to find an experimentally realizable witness. (i) The first strategy is based on measuring the
projector-based witness

W (P)
= const. · 1 − |9〉〈9| (1)

for the detection of genuine multipartite entanglement. |9〉 is the target state of the experiment.
For reducing experimental effort, the aim is to find an efficient decomposition of the projector.
(ii) The second strategy is to find a witness that needs fewer measurements than the projector
witness, but the price for that might be a lower robustness against noise. The search for such a
witness can be simplified if we look for a witnessW such that

W − αW (P) > 0 (2)

for some α > 0. Such a witness is guaranteed to detect genuine multi-qubit entanglement. The
advantage of this approach is that the expectation value ofW can be used to find a lower bound
on the fidelity. (iii) The third strategy is to find a witness independent from the projector witness.
In this case, one has to find an easily measurable operator whose expectation value takes its
maximum for the target state. Then, one has to find the maximum of this operator for biseparable
states. Any state that has an operator expectation value larger than that is genuine multipartite
entangled.

For the optimization of entanglement witnesses for small experimental effort and large
robustness to noise, we use semidefinite programming [24]–[29]. Our methods can efficiently
be used for multi-qubit systems with up to about 10 qubits. This is important, since there are
many situations where semidefinite programming could help theoretically, but in practice the
calculations cannot be carried out even for systems of modest size.

We use our methods to design witnesses detecting entanglement in the vicinity of
symmetric Dicke states. An N -qubit symmetric Dicke state with m excitations is defined
as [30, 31]

|D(m)

N 〉 :=

(
N
m

)−1/2 ∑
k

Pk(|11, 12, . . . , 1m, 0m+1, . . . , 0N 〉), (3)

where
∑

k Pk(.) denotes summation over all distinct permutations of the spins. |D(1)

N 〉 is
the well-known N -qubit W state. The witnesses we will introduce in the following have
already been used in the photonic experiment described in [32], aiming to observe a |D(3)

6 〉
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state [32]8. We show that genuine multi-qubit entanglement can be detected and the fidelity
with respect to the above highly entangled state can efficiently be estimated with two and three
measurement settings, respectively. As a byproduct, we will also derive an upper bound for the
number of settings needed to measure any permutationally invariant operator. We show that
such operators can be efficiently measured even for large systems.

The structure of our paper is as follows. In section 2, we present the basic methods for
constructing witnesses. In section 3, we use these methods for constructing witnesses to detect
entanglement in the vicinity of a six-qubit symmetric Dicke state with three excitations. In
section 4, we present witnesses for states obtained from the above state by measuring some
of the qubits. In appendix A, we summarize the tasks that can be solved by semidefinite
programming, when looking for suitable entanglement witnesses. In appendix B, we summarize
some of the relevant numerical routines of the QUBIT4MATLAB 3.0 program package [34].
In appendix C, we present entanglement conditions for systems with 5–10 qubits that will be
relevant in future experiments.

2. Basic definitions and general methods

A multi-qubit quantum state is entangled if it cannot be written as a convex combination of
product states. However, in a multi-qubit experiment we would like to detect genuine multi-
qubit entanglement [35]: the presence of such entanglement indicates that all the qubits are
entangled with each other, not only some of them. We will now need the following definitions:

Definition 1. A pure multi-qubit quantum state is called biseparable if it can be written as the
tensor product of two, possibly entangled, multi-qubit states

|9〉 = |91〉 ⊗ |92〉. (4)

A mixed state is called biseparable, if it can be obtained by mixing pure biseparable states. If a
state is not biseparable then it is called genuine multi-partite entangled. In this paper, we will
consider witness operators that detect genuine multipartite entanglement.

Definition 2. While an entanglement witness is an observable, typically it cannot be measured
directly. This is because in most experiments only local measurements are possible. At each
qubit k we are able to measure a single-qubit operator Mk, which we can do simultaneously
at all the qubits. If we repeat such measurements, then we obtain the expectation values
of 2N

− 1 multi-qubit operators. For example, for N = 3 these are M1 ⊗ 1 ⊗ 1, 1 ⊗ M2 ⊗ 1,

1⊗1⊗ M3, M1 ⊗ M2 ⊗ 1, M1 ⊗1 ⊗ M3, 1⊗ M2 ⊗ M3, M1 ⊗ M2 ⊗ M3. The set of single-qubit
operators measured is called the measurement setting [4] and it can be given as
{M1, M2, M3, . . . , MN }. When we consider an entanglement condition, it is important to know
how many measurement settings are needed for its evaluation.

Definition 3. Many experiments aim at preparing some, typically pure quantum state %. An
entanglement witness is then designed to detect the entanglement of this state. However, in real
experiments such a state is never produced perfectly, and the realized state is mixed with noise
as given by the following formula:

%noisy(pnoise) = (1 − pnoise)% + pnoise%noise, (5)

8 For another experiment aiming to observe a six-qubit Dicke state see Prevedel et al [33]. See also the related
theoretical work of Campbell et al [33].
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where pnoise is the ratio of noise and %noise is the noise. If we consider white noise then
%noise = 1/2N . The noise tolerance of a witness W is characterized by the largest pnoise for
which we still have Tr(W%noisy) < 0.

In this paper, we will consider three possibilities for detecting genuine multi-qubit
entanglement, explained in the following subsections. Later, we will use these ideas to construct
various entanglement witnesses.

2.1. Projector witness

A witness detecting genuine multi-qubit entanglement in the vicinity of a pure state |9〉 can be
constructed with the projector as

W (P)
9 := λ2

91 − |9〉〈9|, (6)

where λ is the maximum of the Schmidt coefficients for |9〉, when all bipartitions are
considered [4]. For the states considered in this paper, projector-based witnesses are given
by [4, 12, 37]

W (P)

D(N,N/2) :=
1

2

N

N − 1
1 − |D(N/2)

N 〉〈D(N/2)

N |, (7)

W (P)

D(N,1) :=
N − 1

N
1 − |D(1)

N 〉〈D(1)

N |. (8)

These witnesses must be decomposed into the sum of locally measurable terms. For this
decomposition, the following observations will turn out to be very important.

Observation 1. A permutationally invariant operator A can always be decomposed as [45]

A =

∑
n

cna⊗N
n , (9)

where an are single-qubit operators, and such a decomposition can be straightforwardly
obtained.

Proof. Any permutationally invariant multi-qubit operator A can be decomposed as

A =

∑
n

cn

∑
k

Pk(Bn,1 ⊗ Bn,2 ⊗ Bn,3 ⊗ · · · ⊗ Bn,N )Pk, (10)

where Bn,m are single-qubit operators, cn are constants, and Pk are the full set of operators
permuting the qubits. For odd N , we can use the identity∑

k

Pk(Bn,1 ⊗ Bn,2 ⊗ Bn,3 ⊗ · · · ⊗ Bn,N )Pk

= 2−(N−1)
∑

s1,s2,...=±1,

s1s2s3···sN =+1

(s1 Bn,1 + s2 Bn,2 + s3 Bn,3 + · · ·)⊗N . (11)
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Substituting (11) into (10), we obtain a decomposition of the form (9). Equation (11) can be
proved by carrying out the summation and expanding the brackets. Due to the s1s2s3 · · · sN = +1
condition, the coefficient of Bn,1 ⊗ Bn,2 ⊗ Bn,3 ⊗ · · · ⊗ Bn,N is 1. The coefficient of terms like
Bn,1 ⊗ Bn,1 ⊗ Bn,3 ⊗ · · · ⊗ Bn,N , that is, terms containing one of the variables more than once is
zero. For even N , a similar proof can be carried out using9∑

k

Pk(Bn,1 ⊗ Bn,2 ⊗ Bn,3 ⊗ · · · ⊗ Bn,N )Pk

= 2−(N−1)
∑

s1,s2,...=±1,

s1s2s3···sN =+1

s1(Bn,1 + s2 Bn,2 + s3 Bn,3 + · · ·)⊗N . (12)

Next, we give two examples for the application of (11) and (12) for the decomposition of simple
expressions ∑

k

Pk(σx ⊗ σy)Pk =
1

2

{
(σx + σy)

⊗2
− (σx − σy)

⊗2
}
, (13)

∑
k

Pk(σx ⊗ σy ⊗ σz)Pk =
1

4

{
(σx + σy + σz)

⊗3 + (σx − σy − σz)
⊗3 + (−σx − σy + σz)

⊗3

+(−σx + σy − σz)
⊗3

}
, (14)

where σk are the Pauli spin matrices. While the first example does not reduce the number of
settings needed, the second example reduces the number of settings from 6 to 4. ut

Next, we present a method to get efficient decompositions for permutationally invariant
operators.

Observation 2. Any N -qubit permutationally invariant operator A can be measured with at
most

LN =
2
3 N 3 + N 2 + 4

3 N (15)

local measurement settings, using (11) and (12).

Proof. We have to decompose first A into the sum of Pauli group elements as

A =

∑
i, j,m: i+ j+m6N

ci jm

∑
k

Pk(σ
⊗i
x ⊗ σ⊗ j

y ⊗ σ⊗m
z ⊗ 1⊗(N−i− j−m))Pk, (16)

where ci jm are some constants. Then, such a decomposition can be transformed into another one
of the form (9), using (11) and (12). All of the settings needed are of the form {a, a, a, . . . , a}

where a = nxσx + nyσy + nzσz, nk are integer and 16
∑

k |nk|6 N . Simple counting leads to an
upper bound LN for the number of settings given in (15). Here we considered that (nx , ny, nz)

and (−nx , −ny, −nz) describe the same setting. An even better bound can be obtained using that
(nx , ny, nz) and (cnx , cny, cnz) for some c 6= 0 represent the same setting. An algorithm based

9 A similar decomposition with continuous number of terms is of the form
∑

k Pk(B1 ⊗ B2 ⊗ . . .)Pk ∝∫
φk∈[0,2π ][e

iφ1 B1 + eiφ2 B2 + · · · + eiφN−1 BN−1 + e−i(φ1+φ2+···+φN−1) BN ]⊗N dφ1dφ2 · · · dφN−1. Such a construction has
been used for the N = 2 case in [48].
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on this leads to the bounds L′

N = 9, 25, 49, 97, 145, 241, 337, 481, 625 for N = 2, 3, . . . , 10
qubits, respectively.

For the projector |D(N/2)

N 〉〈D(N/2)

N |, the decomposition to Pauli group elements contain only
terms in which each Pauli matrix appears an even number of times. Hence, all of the settings
needed are of the form {a, a, a, . . . , a} where a = 2nxσx + 2nyσy + 2nzσz, nk are integer and
16

∑
k |nk|6 N/2. For this reason, LN/2 and L′

N/2 are upper bounds for the number of settings
needed to measure this operator.

Let us discuss the consequences of observations 1 and 2. They essentially state that
the number of settings needed to measure a permutationally invariant operator scales only
polynomially with the number of qubits. This is important since for operators that are not
permutationally invariant, the scaling is known to be exponential [36]. Moreover, even if we can
measure only correlation terms of the form a⊗N , we can measure any permutationally invariant
operator. ut

2.2. Witnesses based on the projector witness

We can construct witnesses that are easier to measure than the projector witness, but they are
still based on the projector witness. We use the idea mentioned in the introduction. IfW (P) is the
projector witness and (2) is fulfilled for some α > 0, thenW is also a witness. This is becauseW
has a negative expectation value only for states for whichW (P) also has a negative expectation
value. The advantage of obtaining witnesses this way is that we can have a lower bound on the
fidelity from the expectation value of the witness as

Tr(%|9〉〈9|)> λ2
9 −

1

α
Tr(W%). (17)

We will look for such witnesses numerically, such that the noise tolerance of the witness
be the largest possible. This search can be simplified by the following observation.

Observation 3. Since we would like to construct a witness detecting genuine multi-qubit
entanglement in the vicinity of a permutationally invariant state, it is enough to consider witness
operators that are also permutationally invariant.

Proof. Let us consider a witness operator that detects entanglement in the vicinity of a
permutationally invariant state % and its expectation value takes its minimum for %. Then, based
on (5), the witnessW detects entanglement if

pnoise >
Tr(W%)

Tr(W%) − Tr(W%noise)
. (18)

For a permutationally invariant state %, we have % =
1

NP

∑
k Pk%Pk, where NP is the number of

different permutation operators Pk . We assume that the same holds also for %noise. Let us define
the permutationally invariant operator W ′

=
1

NP

∑
k PkWPk. The operator W ′ is non-negative

on all biseparable states since

inf
%∈B

Tr(W%) =
1

NP

∑
k

inf
%∈B

Tr(WPk%Pk)6 inf
%∈B

Tr(W ′%), (19)

where B is the set of biseparable states. Hence, W ′ is a witness detecting genuine
multipartite entanglement. Since we have Tr(W%) = Tr(W ′%), and Tr(W%noise) = Tr(W ′%noise),
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the robustness to noise ofW ′ is identical to that ofW . Hence, it is sufficient to look for witnesses
that are permutationally invariant.

We will first consider measuring the {σx , σx , σx , σx , σx , σx} and {σy, σy, σy, σy, σy, σy}

settings, where σl are the Pauli spin matrices. This we call the two-setting case. Then we will
consider measuring also the {σz, σz, σz, σz, σz, σz} setting, which we call the three-setting case.
Due to observation 3, we consider only permutationally invariant witnesses. Such witnesses can
be written as

W(α0, {αln}) := α0 · 1 +
∑

l=x,y,z

N∑
n=1

αln

∑
k

Pk[σ⊗n
l ⊗ 1⊗(N−n)], (20)

where the summation is over all distinct permutations, and α0 and αln are some constants. We
will consider a simpler but equivalent formulation

W(c0, {cln}) := c0 · 1 +
∑

l=x,y,z

N∑
n=1

cln J n
l , (21)

where c0, cln are the coefficients of the linear combination defining the witness and Jl are the
components of the total angular momentum given as

Jl =
1

2

N∑
k=1

σ
(k)

l . (22)

Here σ
(k)

l denotes a Pauli spin matrix acting on qubit (k).

Finally, if we consider detecting entanglement in the vicinity of |D(N/2)

N 〉 states, then further
simplifications can be made. For this state and also for the completely mixed state all odd
moments of Jl have a zero expectation value. For any witness of the form (21), the maximum
for biseparable states does not change if we flip the sign of cln for all odd n. Hence, following
from an argument similar to the one in observation 3 concerning permutational symmetry, it is
enough to consider only even powers of Jl in our witnesses. ut

2.3. Witnesses independent from the projector witness

In general, we can also design witnesses without any relation to the projector witness. We can
use an easily measurable operator M to make a witness of the form

W := c1 − M, (23)

where c is some constant. To make sure that (23) is a witness for genuine multipartite
entanglement, i.e. 〈W〉 is positive on all biseparable states, we have to set c to

c = max
|9〉∈B

〈M〉|9〉, (24)

where B is the set of biseparable states. The optimization needed for (24) can be done
analytically. For example, for the |D(2)

4 〉 state a witness has been presented that detects genuine
four-qubit entanglement by measuring second moments of angular momentum operators [37].
However, analytical calculations become exceedingly difficult as the number of qubits increases.

The optimization can also be done numerically, but one cannot be sure that simple
numerical optimization finds the global maximum. (See appendix B for a reference to such
a MATLAB program.) Semidefinite programming is known to find the global optimum, but
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the optimization task (24) cannot be solved directly by semidefinite programming. Instead
of looking for the maximum for biseparable states, using semidefinite programming, we can
look for the maximum for states that have a positive partial transpose (PPT) [24, 38] (see
appendices A and B). This way we can obtain

c′ := max
I

max
%>0,%TI>0

〈M〉%, (25)

for which c′ > c. The first maximization is over all bipartitions I . Thus, when putting c′ into
the place of c in (23), we obtain a witness that detects only genuine multipartite entanglement.
In many cases simple numerics show that c = c′. In this case, our witnesses are optimal in the
sense that some biseparable state gives a zero expectation value for these witnesses.

Finally, let us discuss how to find the operator M in (23) for a two- or a three-
setting witness, in particular, for detecting entanglement in the vicinity of |D(N/2)

N 〉. Based on
section 2.2, we have to look for an operator that contains only even powers of Jl . Hence, the
general form of a two-setting witness with moments up to second order is

W (I 2)

D(N,N/2) := cDN − (J 2
x + J 2

y ), (26)

where cDN is a constant10. The coefficients of J 2
x and J 2

y could still be different, however, this
would not lead to witnesses with a better robustness to noise.

For other symmetric Dicke states, based on similar arguments, a general form of a witness
containing moments of Jl up to second order such that it takes its minimum for |D(m)

N 〉 is of the
form

W (I 3)

D(N,m) := cq − (J 2
x + J 2

y ) + q(Jz − 〈Jz〉|D(m)
N 〉

)2, (27)

where cq and q are constants. For the witnesses described in this section, the optimization
process is more time-consuming than for the witnesses related to the projector witness. Because
of that we presented witnesses of the above type that are constructed only with the first and
second moments of the angular momentum operators, and thus contain a few free parameters.

3. Witnesses for a six-qubit Dicke state with three excitations

In this section, we will consider entanglement detection close to a six-qubit symmetric Dicke
state with three excitations, denoted as |D(3)

6 〉. There are several proposals for creating Dicke
states in various physical systems [40]–[43].

3.1. Witnesses based on the projector witness

3.1.1. Two-setting witness. Let us consider the two-setting case and define first the optimi-
zation problem we want to solve. We would like to look for the witnessW with the largest noise
tolerance that fulfills the following requirements:

1. W is a linear combination of certain basis operators Bk, that is,W =
∑

k ck Bk,

2. W − αW (P)

D(6,3) > 0 with some α > 0.

10 Witnesses for the state |D(3)
6 〉 are presented with the structure factor in [39]. In a sense, these witnesses are

written with collective quantities, after a site-dependent phase shift is applied.
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For the two-setting case we set {Bk} = {1, J 2
x , J 2

y , J 4
x , J 4

y , J 6
x , J 6

y }. The second condition makes
sure thatW is also a witness detecting genuine multipartite entanglement.

Note that any optimization algorithm can be used for looking forW . Even if we do not find
the global optimum, that is, the witness with the largest possible robustness to white noise,W is
still a witness detecting genuine multipartite entanglement. However, semidefinte programming
can be used to find the global optimum (see appendix A). The two-setting witness obtained this
way is

W (P2)

D(6,3) := 7.75 · 1 −
35
18(J 2

x + J 2
y ) + 55

72(J 4
x + J 4

y ) −
5

72(J 6
x + J 6

y ), (28)

which tolerates white noise if pnoise < 0.1391. Straightforward calculation shows thatW (P2)

D(6,3) −

2.5W (P) > 0. Based on (17), (0.6 − 〈W (P2)

D(6,3)〉/2.5) bounds the fidelity from below.

3.1.2. Three-setting witness. Similarly we can look for the optimal witness for the three-
setting case. The result is

W (P3)

D(6,3) := 1.5 · 1 −
1

45(J 2
x + J 2

y ) + 1
36(J 4

x + J 4
y ) −

1
180(J 6

x + J 6
y ) + 1007

360 J 2
z −

31
36 J 4

z + 23
360 J 6

z . (29)

White noise is tolerated if pnoise < 0.2735. It is easy to check that W is a witness as W (P3)

D(6,3) −

2.5W (P) > 0.

Based on (17), the expectation value of this witness can be used to bound the fidelity
as F > 0.6 − 〈W (P3)

D(6,3)〉/2.5 =: F ′. Here we will demonstrate how well the fidelity estimation
works for our witness for noisy states. We consider first white noise, then non-white noise of
the form

%
(NW)

noisy := pD63|D
(3)

6 〉〈D(3)

6 | +
1 − pD63

2

(
|D(2)

6 〉〈D(2)

6 | + |D(4)

6 〉〈D(4)

6 |

)
, (30)

with pD63 = 4/7, which is one of the relevant types of noise for the experiment of [32]. Note
that the noise contains the original state |D(3)

6 〉〈D(3)

6 |. The results are shown in figure 1. For the
non-white noise (30), the fidelity estimate based on the witness yields a very good estimate.

Note that it is also possible to design a witness for the largest possible tolerance to the
noise in (30). Due to the special form of the noise, the fidelity estimate turns out to be equal
to the fidelity. This is remarkable: the fidelity can be obtained exactly with only three local
measurements.

3.1.3. Measuring the projector-based witness. For measuring the projector-based witness (7)
for N = 6, one has to decompose the projector in an efficient way. The straightforward
decomposition into the weighted sum of products of Pauli spin matrices leads to a scheme that
needs 183 settings, since for all local operators all the permutations have to be measured. The
number of settings needed can be dramatically decreased if one is looking for a decomposition
of the form (9). Observation 1 makes it possible to decompose the projector in this way such
that only 25 settings are needed. We could further decrease the number of settings needed and
found the following decomposition:

64|D(3)

6 〉〈D(3)

6 | = −0.6[1] + 0.3[x ± 1] − 0.6[x] + 0.3[y ± 1] − 0.6[y] + 0.2[z ± 1] − 0.2[z]

+0.2Mermin0,z + 0.05[x ± y ± 1] − 0.05[x ± z ± 1] − 0.05[y ± z ± 1]

−0.05[x ± y ± z] + 0.2[x ± z] + 0.2[y ± z] + 0.1[x ± y]

+0.6Merminx,z + 0.6Merminy,z. (31)
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Figure 1. The fidelity F versus noise (solid) and the fidelity estimate F ′

versus noise (dotted), for the white noise (bottom two curves) and for the non-
white noise (30) (top two curves). For the fidelity estimate, the three-setting
witness (29) was used.

Here we use the notation [x + y] = (σx + σy)
⊗6, [x + y + 1] = (σx + σy + 1)⊗6, etc. The ± sign

denotes a summation over the two signs, i.e., [x ± y] = [x + y] + [x − y]. The Mermin operators
are defined as

Mermina,b :=
∑
k even

(−1)k/2
∑

k

Pk(⊗
k
i=1σa ⊗

N
i=k+1 σb), (32)

where σ0 = 1. That is, it is the sum of terms with even number of σa’s and σb’s, with the sign of
the terms depending on the number of σa’s. The expectation value of the operators Mermina,b

can be measured based on the decomposition [23]

Mermina,b =
2N−1

N

N∑
k=1

(−1)k
[

cos

(
kπ

N

)
a + sin

(
kπ

N

)
b
]⊗N

. (33)

Hence, Merminx,z and Merminy,z can be measured with six settings. Mermin0,z, on the other
hand, needs only the measurement of the {σz, σz, σz, σz, σz, σz} setting. Knowing that [A],
[A + 1] and [A − 1] can be measured with a single setting {A, A, A, . . . , A}, we find that 21
measurement settings are needed to measure |D(3)

6 〉〈D(3)

6 | : x, y, z, x ± y, x ± z, y ± z,
√

3x ±

z,
√

3z ± x,
√

3y ± z,
√

3z ± y, and x ± y ± z. The settings are also shown in figure 2(a)11.

3.2. Witness independent from the projector witness

So far we constructed witnesses that detected fewer states than the projector-based witness,
in return, they were easier to measure. When proving that they were witnesses, we used the

11 Note that [33] presents another decomposition that needs also 21 settings.
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Figure 2. (a) The measurement settings needed to measure the projector
to the six-qubit symmetric Dicke state with three excitations based on the
decomposition (31). A point at (x, y, z) indicates measuring xσx + yσy + zσz on
all qubits. ( ) Settings for Merminx,z, ( ) settings for Merminy,z, ( ) σx ± σy ± σz,
and ( ) rest of the settings. (b) Settings for the four-qubit Dicke state with
two excitations based on (37). ( ) ±σx , ±σy, ±σz, and ( ) σx ± σy, σx ± σz, and
σy ± σz.

Table 1. The list of entanglement witnesses presented in this paper, together
with the number of measurement settings needed to measure them and their
robustness to white noise. Top four lines: six-qubit witnesses. Bottom five lines:
four- and five-qubit witnesses.

Witness Number of settings Noise tolerance

W (P)

D(6,3) 21 0.4063

W (P3)

D(6,3) 3 0.2735

W (P2)

D(6,3) 2 0.1391

W (I 2)

D(6,3) 2 0.1091

W (I 2)

D(5,2) 2 0.1046

W (P)

D(4,1) 7 0.2667

W (I 2)

D(4,1)(q = 1.47) 3 0.1476

W (P)

D(4,2) 9 0.3556

W (P3)

D(4,2) 2 0.2759

simple relation (2). Following the example of [37], we now look for a two-setting witness of the
form (26) for N = 6 that is independent from the projector witness. For determining cD6, we
need to compute the maximum of J 2

x + J 2
y for biseparable states for all the possible bipartitions.

As we have discussed in section 2.3, instead of looking for the maximum for states that are
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separable with respect to a certain bipartition, we can also look for the maximum for PPT states
(see appendix A). We obtain

cD6 := 11.0179. (34)

W (I 2)

D(6,3) detects genuine multipartite entanglement if for white noise pnoise < 0.1091. Simple
numerical optimization leads to the same value for the maximum for biseparable states12. Hence
we find that our witness is optimal. Finally, the list of witnesses presented in this section are
shown in the top part of table 1.

4. Witnesses for states derived from |D(3)
6 〉 via projections

By projective measurements of one or two of the qubits we can obtain several states that
are inequivalent under stochastic local operations and classical communication (SLOCC).
Surprisingly, these states still possess genuine multipartite entanglement [32, 44]. Next, we
discuss how to detect the entanglement of these states.

4.1. Witnesses for the superposition of five-qubit Dicke states

After measuring one of the qubits in some basis and post-selecting for one of the two outcomes,
one can obtain states of the form

%D5 := c1|D
(2)

5 〉 + c2|D
(3)

5 〉, (35)

where |c1|
2 + |c2|

2
= 1. For such states, the expectation value of J 2

x + J 2
y is maximal, thus a

witness of the form (26) for N = 5 is used to detect their entanglement. Both semidefinite
programing and simple numerical optimization leads to cD5 := 7.8723. Naturally, 〈W (I 2)

D5 〉 is
minimal not only for states of the form (35), but for any mixture of such states.

4.2. Witness for the four-qubit W state

Now we will construct witnesses for a four-qubit W state, which is obtained from |D(3)

6 〉 if two
qubits are measured in the σz basis, and the measurement result is +1 in both cases. We consider
a witness of the form (27) for N = 4 and m = 1. We try several values for q and determine cq

for the witnessWD(4,1)(q) as a function of q using semidefinite programming. For each witness
we also compute the noise tolerance. The results of these computations can be seen in figure 3.
It turns out, that the best witness is obtained for q = 1.47 and cq = 4.1234. It tolerates white
noise if pnoise < 0.1476.

4.3. Three-setting witness for the four-qubit Dicke state

A |D(2)

4 〉 state can also be obtained from |D(3)

6 〉, namely if the measurement outcomes are +1
and −1 for two consecutive σz measurements. For that case, we look for a three-setting witness,
based on the projector witness. For white noise, the result is

W (P3)

D(4,2) := 2 · 1 + 1
6(J 2

x + J 2
y − J 4

x − J 4
y ) + 31

12 J 2
z −

7
12 J 4

z . (36)

12 We used the maxbisep routine of the QUBIT4MATLAB V3.0 package [34] with parameters for accuracy
[30 000, 100 000, 0.0005]. See also appendix B.
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Figure 3. The noise tolerance of the witness W (I 3)

D(1,4) given in (27) as a function
of the parameter q. The maximum is in the vicinity of q = 1.47.

The witness tolerates white noise if pnoise < 0.2759. It is easy to check thatW is a witness: one
has to notice that W (P3)

D(4,2) − 3W (P)

D(4,2) > 0, were W (P)

D(4,2) is defined in (7). Thus, the fidelity can

be estimated from the measurement of the witness as F > 2/9 − 〈W (P3)

D(4,2)〉/3.

4.4. Measuring the projector witness for the four-qubit Dicke state

We can also measure the projector witness W (P)

D(4,2) =
2
31 − |D(2)

4 〉〈D(2)

4 |. The method in
observation 1 gives the following decomposition for the projector

16|D(2)

4 〉〈D(2)

4 | =
2
3([x] + [x ± 1] + [y] + [y ± 1]) + 1

3(8[z] − [z ± 1] − [x ± z] − [y ± z])

+1
6 [x ± y]. (37)

The nine measurement settings are x, y, z, x ± y, x ± z and y ± z, shown also in figure 2(b).
The list of witnesses presented in this section are given in the bottom part of table 1.

5. Conclusions

In summary, we presented general methods for constructing entanglement witnesses for
detecting genuine multipartite entanglement in experiments. In particular, we considered
projector-based witnesses and found efficient decompositions for them. Then, we constructed
two- and three-setting witnesses for symmetric Dicke states that were based on the projector
witness, as well as independent of the projector witness. We applied our methods to design
witnesses for the recent experiment observing a six-qubit symmetric Dicke state with three
excitations [32]. Our methods can be generalized for future experiments. As a first step, in
appendix C we list some entanglement witnesses for systems with 5–10 qubits. Moreover, recent
results on the symmetric tensor rank problem suggest that decompositions more efficient than
the one in observation 1 are possible, however, they involve complex algorithms [45]. Thus,
it would be interesting to look for better upper bounds for the number of settings used for
symmetric operators.
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Appendix A. Semidefinite programming used for obtaining witnesses

Here we summarize two optimization problems that are useful for designing entanglement
witnesses and can be solved with semidefinite programming. Both tasks are related to designing
witnesses that are easy to measure.

1. Semi-definite programming can be used to find the witness W with the largest noise
tolerance as explained in the beginning of section 3.1.1. The corresponding task can be
formulated as

minimize
∑

k

ckTr(Bk%noise),

subject to
∑

k

ckTr(Bk%) = −1,∑
k

ck Bk − αW (P) > 0,

α > 0.

(A.1)

Here % is the state around which we detect entanglement. %noise is the noise, not necessarily
white. The optimization is over α and the ck’s.

2. Semi-definite programming can be used to look for the maximum for PPT bipartite states.
This gives an upper bound on the maximum for biseparable states. In many cases, the two
coincide. The corresponding task can be formulated as a standard semidefinite program as

minimize −Tr(M%),

subject to % > 0,

Tr(%) = 1,

%TA > 0.

(A.2)

Here TA means partial transpose according to some groups of the qubits.

Appendix B. List of MATLAB subroutines

We summarize some of the MATLAB routines of the QUBIT4MATLAB 3.0 package that can
be used for the calculations necessary for designing entanglement witnesses. A full list of the
commands is given in [34].

The command decompose can be used to obtain a decomposition of a Hermitian operator
into the sum of products of Pauli spin matrices. Moreover, maxsep and maxsymsep can be
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used for getting the maximum for separable multi-qudit states and symmetric product states
for a Hermitian operator, respectively. The command maxbisep gives the maximum for states
that are biseparable with respect to some partitioning of the qubits. The command maxb gives
the maximum for all possible bipartitions. All these commands look for the maximum with a
simple optimization algorithm that is not guaranteed to find the global maximum, nevertheless,
it typically does find it. overlapb gives the maximum overlap of a state |9〉 and biseparable
states. It can be used to construct entanglement witnesses of the type (6).

For semidefinite programming, we used SeDuMi [46] and YALMIP [47]. Two subroutines
based on them are now in QUBIT4MATLAB 4.013. The command optwitness looks for the
best witness that can be composed linearly from a set of operators, while maxppt determines
the maximum of an operator expectation value for states with a PPT for some bipartitioning of
the qubits.

Appendix C. Witnesses for systems with 5–10 qubits

A three-setting witness based on the projector witness for the state |D(4)

8 〉 is given by

W (P3)

D(8,4) := 1.3652 · 1 +
∑

l=x,y,z

4∑
n=1

cln J 2n
l , (C.1)

with

{cln} =

0.0038612 −0.0052555 0.0015016 −0.00010726
0.0038612 −0.0052555 0.0015016 −0.000107266

3.124 −1.07699 0.11916 −0.0038992

 . (C.2)

The noise tolerance for white noise is pnoise < 0.2578. For larger N , we can use the ansatz

W (P3)

D(N ,N/2) := c1 · 1 + cxy{(σx + 1)⊗N + (σx − 1)⊗N + (σy + 1)⊗N + (σy − 1)⊗N
} +

N/2∑
n=1

czn J 2n
z .

(C.3)

For N = 10, the optimal coefficients are c1 = 1.3115, cxy = −0.0023069, and cz =

{3.4681, −1.2624, 0.16494, −0.0084574, 0.000146551}. White noise is tolerated if pnoise <

0.2404. The large noise-tolerance for the N = 10 case suggests that a robust three-setting
witness for |D(N/2)

N 〉 might be constructed even for large N .

A three-setting witness independent of the projector witness for the N -qubit W state
is given by (27) for m = 1. For N = 5, we have c5 = 5.6242, q5 = 2.22, and the witness
tolerates white noise if pnoise < 0.0744. For N = 6, we have c6 = 7.1095, q6 = 3.13, and noise
is tolerated if pnoise < 0.0401.
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