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Entanglement detection based on interference and particle counting
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A sufficient condition for entanglement in two-mode continuous systems is constructed with the interference
visibility and the uncertainty of the total particle number. The observables to be measured~particle numbers
and particle number variances! are relatively easily accessible experimentally. The method may be used to
detect entanglement in light fields or in Bose-Einstein condensates. In contrast to the standard approach based
on entanglement witnesses, the condition is expressed in terms of an inequality which is nonlinear in expec-
tation values. The condition is constructed using uncertainty relations with the particle number and the de-
struction operators.
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I. INTRODUCTION

In spite of considerable efforts, the separability of gene
mixed quantum states is still an open problem, even if
whole density matrix is known. The positivity of the parti
transpose@1# of the density matrix is a necessary conditi
for separability; however, it is a sufficient condition only fo
the 232 ~two qubits! and 233 dimensional cases and fo
two-mode Gaussian states in continuous variable syste
For higher dimensions there exist entangled states@2# with
positive partial transpose and the separability problem is
fully solved. For bipartite low-rank density matrices an o
erational criterion for separability is presented in Ref.@3#. A
necessary and sufficient condition for entanglement of
bipartite Gaussian continuous states is also known@4#. En-
tanglement can also be detected by several other meth
e.g., through witness operators whose expectation valu
negative only for~some! entangled states@5#.

In an experiment the density matrix is usually not know
only partial information is available on the quantum sta
One can typically measure a few observables and still wo
like to detect some of the entangled states@6#. Thus to find a
criterion for entanglement with easily measurable obse
ables is crucial for entanglement detection. There are o
few such criteria in the literature@7–11# for detecting en-
tanglement in complicated situations such as in ma
particle or continuous variable systems. The method
scribed in Ref.@7# detects entanglement among cold ato
having two internal degrees of freedom based on inequal
with the total angular momentum components. Reference@8#
derives a criterion for the entanglement between two pair
bosonic modes in terms of the total angular momentum
the particle number. This criterion detects entangled st
that are close to singlet states of two large spins.

A criterion for detecting entanglement between tw
modes is given in Refs.@9,10#. Reference@9# presents a sce
nario where one just has to measure the second momen
x andp for both systems. For example, if the inequality

@D~xA1xB!#21@D~pA2pB!#2,2 ~1!

is fulfilled, then the state is entangled. Here (DX)25^X2&
1050-2947/2003/68~6!/062310~6!/$20.00 68 0623
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2^X&2, and xk and pk are canonical operators satisfyin
@xk ,pk#5 i . Note that the left-hand side of Eq.~1! is qua-
dratic in expectation values. However, by setting^xk& and
^pk& to zero by single-party unitary operations, only term
linear in expectation values remain and the criterion
equivalent to an entanglement witness.

A generalization of criterion~1! detects all entangled two
mode Gaussian states@9,10#. However, in many experimen
tal situations non-Gaussian states are prepared. For exam
if one hasN photons and sends them through a beam spli
or if one hasN atoms in some internal state and applies
appropriate laser pulse, the state will be

uC&5
1

A2NN!
~a†1b†!Nu0,0&5

1

A2N (
n50

N AS N

n D un,N2n&.

~2!

Here a and b are annihilation operators which are defin
according toxA5(a1a†)/A2. This entangled state is no
detected by the previous criterion as it will be demonstra
later.

In this paper, we will present a criterion which:~i! re-
quires measuring quantities which are easily accessible
perimentally and~ii ! detects entangled states in the vicini
of state~2!. The paper is organized as follows. In Sec. II t
entanglement criterion is derived. In Sec. III it is discuss
what states are detected by this criterion and issues conc
ing its possible experimental applications are also con
ered. A summary is given in Sec. IV.

II. ENTANGLEMENT CRITERION

In this section we will show that for all separable state
i.e., states that can be written as

r5(
k

pkrk
A

^ rk
B , ~3!

the following expression involving the variances of the to
particle numberNªa†a1b†b and of the operator (a2b) is
bounded from below as
©2003 The American Physical Society10-1
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$~DrN!211%$@Dr~a2b!#211%>
^N&r

4
1

1

8
, ~4!

where (DrA)2
ª^A†A&r2u^A&ru2 ~note thatA need not be

Hermitian!.
The physical motivation for this criterion comes from th

observation, made in the context of Bose-Einstein cond
sates in Ref.@12# ~also explained in Sec. III!, that it is not
possible to have a fixed total particle number
corresponding to (DrN)250—and perfect interference—
corresponding to@Dr(a2b)#250—at the same time, unles
the system under consideration is in a highly nonclassi
i.e., entangled, state.

In Sec. II A a simple separability criterion will be prove
In Sec. II B this criterion will be generalized. Technical d
tails are in the Appendix. Section II C proves our main res
Eq. ~4!.

A. Simple criterion

In this section a simple separability criterion will be d
rived based on uncertainty relations for the two subsyste
In order to understand the connection between the un
tainty relations and the necessary condition for separab
it is instructive first to review how the condition~1! was
obtained starting from the single-subsystem uncertainty r
tions @9,11#,

~DrxA/B!21~DrpA/B!2>1. ~5!

For a separable state of the form~3! the sum of uncertainties
of the EPR-type operatorsxA1xB andpA2pB can be written
as

@Dr~xA1xB!#21@Dr~pA2pB!#2

5(
k

pk$~Dr
k
AxA!21~Dr

k
ApA!21~Dr

k
BxB!21~Dr

k
BpB!2%

1(
k

pk$^~xA1xB!&r
k
A

^ r
k
B

2
2^~xA1xB!&r

2

1^~pA2pB!&r
k
A

^ r
k
B

2
2^~pA2pB!&r

2%>2. ~6!

In the equality it was exploited that for a product state
uncertainty of an EPR-type operator splits into the sum
the corresponding single system uncertainties
@Dr

k
A

^ r
k
B(xA1xB)#25(Dr

k
AxA)21(Dr

k
BxB)2. Based on the

uncertainty relations~5! for the individual subsystems,A and
B, the first sum in Eq.~6! is bounded from below by 2. Sinc
the second sum is non-negative, the left-hand side of Eq~6!
is also bounded by 2 which finishes the proof of Eq.~1!.
Thus for separable states the sum of the variances oxA
1xB and pA2pB has the same lower bound as the sum
the corresponding single system uncertainties. Note that
simple relationship holds because the right-hand side of
uncertainty relation~5! is aconstant. On the other hand, this
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bound is not valid for nonseparable states. In this case
sum of the two uncertainties can even be zero@9# sincexA
1xB andpA2pB commute.

After reviewing the previous example with the EPR o
erators, we will prove that all separable states fulfill

Srª~DrN!21@Dr~a2b!#2> f ~^N&r!, ~7!

where

f ~N!5AN1
3

4
1

A3

2
22. ~8!

This will be necessary later to obtain our main result, Eq.~4!.
Here (DrN)2 is the variance of the total particle number
the two-mode system~i.e., in a two-mode electromagneti
field or Bose-Eisnten condensate in a double-well potenti!,
while @Dr(a2b)#2 is related to the variance of the pha
difference between the two modes.

The proof of Eq.~7! is the following. For a separable sta
of the form ~3!, the sums of the two uncertainties in Eq.~7!
can be written asSr5Sr,01Sr,1 , where

Sr,05(
k

pk$~Dr
k
ANA!21~Dr

k
Aa!21~Dr

k
BNB!2

1~Dr
k
Bb!21Nk

22^N&r
2%, ~9!

Sr,15(
k

pku^~a2b!&rk
u22u^~a2b!&ru2. ~10!

Here NAªa†a, NBªb†b, and Nkª^a†a1b†b&rk
. Using

the Cauchy-Schwarz inequality, one can show thatSr,1>0,
and thusSr>Sr,0 .

Next, we will need the following uncertainty relatio
proved in part 1 and 2 of the Appendix

Rrª~DrNA!21~Dra!2>L~^NA&r!, ~11!

where

L~N!5AN1 3
4 21. ~12!

Obviously, the same inequality is true for subsystemB. In-
equality ~11! is an alternative of the number-phase unc
tainty without the problem of defining an appropriate pha
operator and the difficulties due to the 2p periodic nature of
the phase@13#.

In our case the bound in the uncertainty relation~11! is
not a constant but afunction of an operator expectation
value. Thus the method presented for the EPR-type opera
cannot be used, and careful analysis of the different pro
ties of the functionL(N) must be done@14#. Using inequal-
ity ~11! and the fact that bound~12! fulfills L(N1)1L(N2)
>L(N11N2)1L(0) we obtain

Sr>(
k

pk$L~Nk!1L~0!1Nk
22^N&r

2%. ~13!
0-2
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ENTANGLEMENT DETECTION BASED ON . . . PHYSICAL REVIEW A68, 062310 ~2003!
Now using the fact thatL(Nk)1Nk
2 is a concave function o

Nk , we obtainSr>L(N)1L(0) which proves Eq.~7!.
Condition ~7! corresponds to a line on th

(DrN)2–@Dr(a2b)#2 plane ~solid line in the inset of Fig.
1!. All separable states belong to points above this line
fulfill Eq. ~7!. Points below this line correspond to entangl
states only.

B. Generalization

We would like to find more entangled states in t
(DrN)2–@Dr(a2b)#2 plane. In order to do that we genera
ize Eq.~7! as

Sr,wªw~DrN!21~12w!@Dr~a2b!#2> f w~^N&r!,
~14!

where 0,w,1 determines the relative weights of the tw
terms andf w(N) is defined at the end of this section. In
equality ~14! corresponds a region above a line with slo
w/12w ~dashed lines in the inset of Fig. 1!. These lines are
the tangentials of the curve enclosing all separable states
the points below this curve correspond to entangled stat

In order to obtain the lower boundf w(^N&r), we have to
follow a procedure similar to what was presented in the p
ceding section. For a separable state one obtains

Sr,w>(
k

pk$w~Dr
k
ANA!21~12w!~Dr

k
Aa!21w~Dr

k
BNB!2

1~12w!~Dr
k
Bb!21wNk

22w^N&r
2%. ~15!

In Appendix A 3 we prove the following uncertainty rela
tion:

Rr,wªw~DrNA!21~12w!~Dra!2>Lw~^NA&r!, ~16!

where

FIG. 1. Numerical test of the inequality~4! for the two-mode
separability problem forN5200. ~Solid! Boundary of the region
defined by Eq.~4!. All states below this line are entangled.~Dia-
monds! Points corresponding to separable states found numeric
Inset: ~solid! boundary of the region defined by Eq.~7!; ~dashed!
boundary of the region defined by Eq.~14! for w50.3 and 0.7.
06231
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Lw~N!5HAw~12w!S N1
1

4D1
w

4
2

1

2
if N>NL

~N2NL!w~12w! if N,NL .
~17!

Here NL5(12w)/4w. Inequality ~16! is the generalization
of Eq. ~11! for unequal weights for the two variances. F
N,NL the functionLw(N) is linear and the slope is dete
mined in such a way that there is not an abrupt change in
derivative ofLw(N) at N5NL .

In order to get a lower bound forSr,w using the uncer-
tainty relation~16!, one has to follow similar steps as in Se
II A. Using the facts thatLw(N1)1Lw(N2)>Lw(N11N2)
1Lw(0) is fulfilled andLw(N)1wN2 is a concave function
of N, the lower bound forSr,w is obtained asf w(N)
5Lw(N)1Lw(0).

C. Proof of main result

In this section Eq.~4! will be obtained by determining the
curve which has the lines corresponding to differentw’s as
its tangentials. The tangentials of a hyperbola (y1c0)
5C/(x1c0) are given by wx1(12w)y52Aw(12w)C
2c0. One can reformulate Eq.~14! by replacing the right-
hand side by a slightly weaker lower bound which fits th
form,

f̃ w~N!5Aw~12w!~N1 1
2 !21. ~18!

Hence the equation for a hyperbola on the (DrN)2–@Dr(a
2b)#2 plane can be obtained~solid curve in Fig. 1!. Inequal-
ity ~4! corresponds to points above this hyperbola. Any st
which violates this inequality is necessarily entangled.

III. DISCUSSION

First, the tightness of the necessary condition for sepa
bility ~4! should be verified. Numerical checks show that it
quite strong~see Fig. 1!. The diamonds indicate produc
states of the formu0& ^ uC& found numerically. The state in
the origin of Fig. 1, giving zero for both variances in Eq.~4!,
is state~2! as can be shown as follows. Eigenstates ofN̂ with
N particles have the formuC&5(cnun,N2n&. The state (a
2b)uC& hasN21 particles, thus (a2b)uC&5luC& is pos-
sible only if the eigenvaluel50. A state for which (a
2b)uC&50 has to fulfill cn11An115cnAN2n. This de-
termines the state uniquely as Eq.~2!.

Our method detects entangled states in the proximity
state~2! on the (DN)2–@D(a2b)#2 plane as shown in Fig
1. ~In this section we will omit ther index.! Other interesting
states on the (DN)2–@D(a2b)#2 plane: A separable stat
having (DN)250 is the convex combination of products o
Fock statesunk&uN2nk&. For these@D(a2b)#25N. Sepa-
rable states with perfect destructive interference between
modes having@D(a2b)#250 are the convex combinatio
of products of coherent states of the formuak&uak1c&,
wherec is a constant common for all product subensemb
For these states (DN)2>N @12#.

ly.
0-3
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TÓTH, SIMON, AND CIRAC PHYSICAL REVIEW A68, 062310 ~2003!
According to our criterion, to detect entanglement in
experiment, the variances ofN and (a2b) should be mea-
sured. A simpler scenario is to measure the variance ofN and
^(a†2b†)(a2b)&. Since @D(a2b)#2<^(a†2b†)(a2b)&
inequality ~7! can be used for this case after replaci
(D(a2b))2 by ^(a†2b†)(a2b)&. The latter is just twice
the particle number in the modeb85(a2b)/A2.

The generation of state~2! is never perfect, thus the sys
tem is in a mixed state. Our method makes it possible
detect entanglement even in this case. If^b8†b8&'(DN)2

the maximum particle number variance for a state to be
tected is (DN)2}AN, which is much smaller than for cohe
ent states. On the other hand, for perfect destructive inte
ence when̂ b8†b8&'0 the maximal variance is (DN)2}N.

Equation ~2! describes the quantum state of a Bos
Einstein condensate of atoms, if thea and b modes corre-
spond to the two halves of the condensate@12#. In this case
(a†1b†) creates a particle in stateuC& and Eq.~2! describes
a product of single-particle states of the formuC& ^ uC&
^ •••^ uC&. Although it is a product state from the point o
view of the individual particles, in theun,m& basis it is
clearly entangled. In order to detect entanglement, one n
to measure the variance of the total particle number and
particle number in one of the new modes after the two hal
of the condensates interfere@15,16#.

The condensate can be ‘‘split’’ into two modes, realizi
state~2!, and then reunited for detection in a Mach-Zehnd
type interferometer@16#. The state~2! can also be obtained in
a Bose-Einstein condensate of two-level atoms, by prepa
the atoms in the same internal state and then applying ap/2
laser pulse. The modes can then be spatially separated w
state-dependent potential@17#.

Finally, the state~2! can be prepared with a 50/50 bea
splitter and a laser pulse corresponding to a state with
photon number variance. For obtaining (DN)2 and^b8†b8&,
a second beam splitter can be used, together with ph
number measurements in the two modes. In oder to de
entanglement, assuming perfect destructive interferenc
the second beam splitter, for the photon source (DN)2

<N/427/8 is required. This can be obtained, for examp
with a state with sub-Poissonian number statistics.

Besides experimental considerations, the advantage o
approach is the ability to detect states in the vicinity of t
entangled state~2! which is not detected by the metho
based on the correlation matrix@9,10#. The correlation matrix
g contains the correlations of two pairs of conjugate sing
party observables, which now we choose to be$Rk%
5$xA ,pA ,xB ,pB%. Here xA5(a1a†)/A2, pA5(a
2a†)/(A2i ), andxB and pB are defined similarly for theb
mode. For the state~2! the correlation matrixgkl5Tr$r(Rk
2^Rk&)(Rl2^Rl&)%1Tr$r(Rl2^Rl&)(Rk2^Rk&)% is ob-
tained as

g5S N11 0 N 0

0 N11 0 N

N 0 N11 0

0 N 0 N11

D . ~19!
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The sufficient condition for inseparability isg̃2 iJ>” 0,
where g̃ is the correlation matrix corresponding to the pa
tially transposed density matrix andJkl5 i @Rk ,Rl #. Here g̃
2 iJ>0 thus the state is not detected as entangled.

Moreover, with the simple method used for criterion~1!
described in the Introduction, our criteria~4!, ~7!, and ~14!
cannot be reduced to an entanglement witness. This is
cause they contain the variance of the particle number
^N& cannot be set to zero by single-party unitary operatio

IV. CONCLUSIONS

In summary, a simple inequality for the expectation valu
of observables was proposed for entanglement detec
Since only the measurement of easily accessible quant
~particle numbers and particle number variances! are needed,
this approach may be feasible for detecting entanglement
perimentally in Bose-Einstein condensates or in a two-m
photon field.

Our method can be generalized for detecting other hig
entangled states. First two operators must be identified wh
have the state as an eigenstate. Then a necessary con
for separability must be constructed with the variances
these operators. Such a highly entangled state is, for
ample, theuN,0&1u0,N& Schrödinger cat state which is the
eigenstate ofN and (a†b)N1(ab†)N.
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APPENDIX: SINGLE-MODE UNCERTAINTY RELATION

1. Analytic calculation

In this section we will prove Eq.~11!. We will find a
lower bound for the sum of the two variances (DrNA)2 and
(Dra)2 for any single-mode quantum state. This uncertai
relation is needed to find a lower bound for the sum of o
erator variances for two-mode separable states in Eq.~7!.

The first term on the left-hand side of Eq.~11! is zero for
number states. The second term is zero for coherent st
NA anda have a common eigenvector: for the stateu0& the
variances of both are zero. In order to find a nontrivial re
tion, the lower bound for the sum of the two variances m
have at least one parameter. We choose this parameter
^NA&r . For ^NA&r.0 the operatorsNA and a do not have
common eigenvectors and the sum of the two variances
bounded from below.

The proof of Eq. ~11! is based on finding two lowe
bounds for the left hand side of Eq.~11! and then combining
them. Let us denotêa&r5Aa^NA&reif, where 0<a<1.
The first lower bound is
0-4
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ENTANGLEMENT DETECTION BASED ON . . . PHYSICAL REVIEW A68, 062310 ~2003!
Rr>~Dra!25~12a!^NA&r5:B1~NA ,a!. ~A1!

The second bound@18# is obtained from

Rr5~DrNA!21 1
2 @~DrxA!21~DrpA!2#2 1

2

>A2~DrNA!2@~DrxA!21~DrpA!2#2 1
2 . ~A2!

Here for the inequalityX21Y2>2XY was applied. Now,
using the facts that (DrNA)2(DrxA)2>u^pA&ru2/4 and
(DrNA)2(DrpA)2>u^xA&ru2/4 we obtain

Rr>Au^xA&ru21u^pA&ru2

2
2

1

2

5u^a&u2
1

2

5Aa^NA&r2
1

2

5:B2~NA ,a!. ~A3!

From Eqs.~A1! and ~A3! one can derive a higher lowe
bound for Eq.~11! by taking the maximum of these tw
bounds. It can be shown that

B~N,a!ªmax@B1 ,B2#5H B1~N,a! if a>aL,

B2~N,a! if a<aL ,
~A4!

where

AaL5A11
3

4N
2

1

2AN
. ~A5!

HereaL is always non-negative, however, for small partic
numbersN,1/4 it is larger than 1.

The lower bound for Eq.~11! will be constructed by mini-
mizing B(N,a) with respect toa. After some algebra one
obtains

min
a

B~N,a!5HAN1 3
4 21 if N. 1

4 ,

0 if N< 1
4 .

~A6!

As stated in Sec. II A, in order to use this result in the tw
mode separability problem the bound should fulfill two c
teria ~i! L(N)1N2 should be concave,~ii ! L(N1)1L(N2)
>L(N11N2)1L(0). The bound Eq.~A6! does not fulfill
~ii !, thus a weaker bound satisfying this condition has to
chosen.L(N), as defined in Eq.~12!, is such a bound. It
coincides with Eq.~A6! for N>1/4, while for N,1/4 it is
negative.

2. Numerical verification

In this section we prove by numerical calculations th
Eq. ~12! is a tight lower bound for Eq.~11!. We will deter-
06231
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t

mine the state vector minimizing the left-hand side of E
~11! and the corresponding minimum with the constra
^a†a&5NA .

The wave function is given in the number basis as

uC&5(
k

ckuk&. ~A7!

The left-hand side of Eq.~11! can be rewritten as

Rr5H(
k

ucku2k22NA
2 J 1H NA2U(

k
ck* ck11Ak11U2J .

~A8!

Lagrange multipliers must be added in order to constrain
particle number toNA and keep the norm one

g~$cm%,$cm* %,m1 ,m2!

5Rr2m1S NA2(
k

ucku2kD 2m2S 12(
k

ucku2D .

~A9!

When minimized, all the derivatives of Eq.~A9! must be
zero. Moreover, sinceRr($ck%)>Rr($ucku%) we can restrict
our search for the minimum for realck’s. Hence one obtains

cn115S n21m1n1m2

AAn11
D cn2SA n

n11D cn21 , ~A10!

where A5^a&5(ckck11Ak11 and the term withcn21 is
not present forn50. FromA, m1, andm2 the unnormalized
wave function can be constructed by settingc051. As can
be seen in Fig. 2,L(NA) defined in Eq.~12! is very close to
the minimum found numerically, thus it is a tight bound. T

FIG. 2. ~Diamonds! The minimum ofRr @for a definition see
Eq. ~11!# if the particle number is constrained toNA . ~Solid! The
analytic lower boundL(NA) defined in Eq.~12!. The inset shows
the wave function in the number basis~diamonds! corresponding to
the minimum of uncertainties forNA520. The results fit very well
a Gaussian curve~solid!.
0-5
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TÓTH, SIMON, AND CIRAC PHYSICAL REVIEW A68, 062310 ~2003!
wave function minimizingRr is shown in the inset. In the
number basis it fits very well a Gaussian curve even
small particle numbers.

3. Generalized single-mode uncertainty relation

In this section we will prove Eq.~16!. For w50 the state
minimizing Rr,w is a coherent state, forw51 it is a number
state. For intermediatew’s the wave function giving the
minimum interpolates between these two. TheLw(^NA&r)
bound can be obtained, after insertingw and (12w) in the
expression to be minimized, by following the same steps
in part 1 of the Appendix. The two bounds found will be

B1,w~NA ,a!5~12w!~12a!NA ,

B2,w~NA ,a!5Aw~12w!aNA2
12w

2
. ~A11!

The maximum of these two,Bw(N,a), can be obtained
knowing thatB1,w(N,a).B2,w(N,a) if a.aL , where
l,

ys
d

ev

A

.

re

ev
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AaL5A 22w

4N~12w!
112A w

4N~12w!
. ~A12!

Hence the lower bound forRr,w is obtained as

min
a

Bw5HAw~12w!S N1
1

4D1
w

4
2

1

2
if N.NL

0 if N<NL ,
~A13!

whereNL5(12w)/4w.
As stated in Sec. II B, in order to use these results in

two-mode separability problem the bound should fulfill tw
criteria ~i! L(N)1wN2 should be concave,~ii ! L(N1)
1L(N2)>L(N11N2)1L(0). Equation~A13! does not ful-
fill ~ii !, thus a weaker bound satisfying both conditions has
be chosen.Lw(N) as defined in Eq.~17! is such a bound. It
coincides with Eq.~A13! for N>NL while for N,NL it is a
linear function ofN and it is negative. The function giving
Lw(N) for N.NL @top line in Eq.~A13!# cannot simply be
extended toN<NL as it was done in part 1 of the Append
for the simpler uncertainty relation, since in this case~i!
would not be satisfied.
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