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Entanglement detection based on interference and particle counting
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A sufficient condition for entanglement in two-mode continuous systems is constructed with the interference
visibility and the uncertainty of the total particle number. The observables to be medpariade numbers
and particle number variangeare relatively easily accessible experimentally. The method may be used to
detect entanglement in light fields or in Bose-Einstein condensates. In contrast to the standard approach based
on entanglement witnesses, the condition is expressed in terms of an inequality which is nonlinear in expec-
tation values. The condition is constructed using uncertainty relations with the particle number and the de-
struction operators.
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[. INTRODUCTION —(X)?, and x, and p, are canonical operators satisfying
[X¢,px]=i. Note that the left-hand side of Eql) is qua-

In spite of considerable efforts, the separability of generabratic in expectation values. However, by settipg) and
mixed guantum states is still an open problem, even if thép,) to zero by single-party unitary operations, only terms
whole density matrix is known. The positivity of the partial linear in expectation values remain and the criterion is
transposd 1] of the density matrix is a necessary condition equivalent to an entanglement witness.
for separability; however, it is a sufficient condition only for A generalization of criterioril) detects all entangled two-
the 2xX2 (two qubit9 and 2x3 dimensional cases and for mode Gaussian stat¢8,10]. However, in many experimen-
two-mode Gaussian states in continuous variable systemsal situations non-Gaussian states are prepared. For example,
For higher dimensions there exist entangled stg2¢svith if one hasN photons and sends them through a beam splitter
positive partial transpose and the separability problem is nadr if one hasN atoms in some internal state and applies an
fully solved. For bipartite low-rank density matrices an op-appropriate laser pulse, the state will be
erational criterion for separability is presented in H&f. A

necessary and sufficient condition for entanglement of all 1 . 1 2’\‘: (N)
bipartite G i ti tates is also k En- V)= a'+b"H"0,0= — n,N—n).
ipartite Gaussian continuous states is also knpiinEn- | ¥) 5 ( )"|0,0 72N & Vi, | )
(2

tanglement can also be detected by several other methods, V2"IN!
e.g., through witness operators whose expectation value is
negative only for(some entangled statgs].

In an experiment the density matrix is usually not known,
only partial information is available on the quantum state.
One can typically measure a few observables and still woul
like to detect some of the entangled stdi@ls Thus to find a
criterion for entanglement with easily measurable observ-
ables is crucial for entanglement detection. There are onlg

few such criteria in the literaturE7—11] for detecting en- . )

tanglement in complicated situations such as in many®f State(2). The paper is organized as follows. In Sec. II the
particle or continuous variable systems. The method de€ntanglement criterion is derl\{ed. 'In Sec. 11 |'t is discussed
scribed in Ref[7] detects entanglement among cold atoms//Nat states are detected by this criterion and issues concern-
having two internal degrees of freedom based on inequalitie®d [tS Possible experimental applications are also consid-

with the total angular momentum components. Referggpe €'€d- A summary is given in Sec. IV.

derives a criterion for the entanglement between two pairs of

bosonic modes in terms of the total angular momentum and Il. ENTANGLEMENT CRITERION

the particle number. This criterion detects entangled states
that are close to singlet states of two large spins.

A criterion for detecting entanglement between two
modes is given in Ref$9,10]. Referencd9] presents a sce-
nario where one just has to measure the second moments of p=2 kaﬁ\®PE, 3)
x andp for both systems. For example, if the inequality K

Here a and b are annihilation operators which are defined
according tox,=(a+a')/y2. This entangled state is not
etected by the previous criterion as it will be demonstrated

In this paper, we will present a criterion whicli) re-
uires measuring quantities which are easily accessible ex-
erimentally andii) detects entangled states in the vicinity

In this section we will show that for all separable states,
i.e., states that can be written as

[A(Xpa+Xg) 12+ [A(pa—pgr)12<2 (1)  the following expression involving the variances of the total
particle numbeN:=a'a+b'b and of the operatora(—b) is
is fulfilled, then the state is entangled. Her&X)?=(X?)  bounded from below as
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<|\|>p 1 bound is not valid for nonseparable states. In this case the
{(A,N)?+1H{[A (a—b)]?+1}= 2 g @  sum of the two uncertainties can even be Z@sincex,
+Xg andpa— pg commute.
After reviewing the previous example with the EPR op-
v|_\|/here_t_@r§A)2=:<ATA>p— (A),|? (note thatA need not be erators, we will prove that all separable states fulfill
ermitian.
The physical motivation for this criterion comes from the 3 ,=(A,N)*+[A (a—b)]?=f((N),), (7)
observation, made in the context of Bose-Einstein conden-
sates in Ref[12] (also explained in Sec. )| that it is not  where
possible to have a fixed total particle number—
corresponding to Z(pN)2=O—and perfect interference— / 3 3
corresponding tA ,(a— b)]?=0—at the same time, unless F(N)=\/N+ Z+ 7_2'
the system under consideration is in a highly nonclassical,
i.e., entangled, state. This will be necessary later to obtain our main result, @.
In Sec. Il A a simple separability criterion will be proved. Here (A,N)? is the variance of the total particle number in
In Sec. 11 B this criterion will be generalized. Technical de- the two-mode systeni.e., in a two-mode electromagnetic
tails are in the Appendix. Section Il C proves our main resultfield or Bose-Eisnten condensate in a double-well poténtial
Eq. (4). while [A (a—b)]? is related to the variance of the phase
difference between the two modes.
The proof of Eq(7) is the following. For a separable state
of the form(3), the sums of the two uncertainties in K@)

®

A. Simple criterion

In this section a simple separability criterion will be de- can pe written a& ,=3, ;+3,;, where
rived based on uncertainty relations for the two subsystems. pomeE e
In order to understand the connection between the uncer- ) ) )
tainty relations and the necessary condition for separability, Ep,o=2k PI{(A,ANA)*+ (A 08) "+ (A ENE)
it is instructive first to review how the conditiofl) was
qbtamed starting from the single-subsystem uncertainty rela- +(APEb)Z+ NE_<N>/§}' 9)
tions[9,11],
A Xpp) 2+ (A 2=1. 5
(Boue)"* (8,Pwe) © %= 3 pl((@-b)y, 2ol (@-b) 2 (10

For a separable state of the fof) the sum of uncertainties . . N N )
of the EPR-type operatoss,+ xg andp,— pg can be written  Here Na==a'a, Ng:=b'b, and Ny:=(a'a+b'b), . Using
as the Cauchy-Schwarz inequality, one can show Hat=0,
and thus2 ;=3 .
2 B 2 Next, we will need the following uncertainty relation
[Ap(Xatxg) I+ [A,(Pa~Ps)] proved in part 1 and 2 of the Appendix

=20 Pl (8% 7+ (A,pR)*+ (A 2x@) 2+ (A 2P) ) R,:=(A,Na)2+(A,2)2=L((Na),), (12)

) where
+2 pk{((XA+XB)>pA®pB_<(XA+XB)>;2)
k k= 3

L(N)=+N+3—1. (12

+((Pa=Pe)) a0 8~ {(Pa—Pe))2}=2. (6) , _ .
k= Tk Obviously, the same inequality is true for subsystBnin-

equality (11) is an alternative of the number-phase uncer-
In the equality it was exploited that for a product state thetainty without the problem of defining an appropriate phase
uncertainty of an EPR-type operator splits into the sum ofoperator and the difficulties due to thereriodic nature of
the corresponding single system uncertainties ashe phasg¢13].
[Apfe,B(XatXs)17= (4 ,2xa)?+ (A 8xg). Based on the In our case the bound in the uncertainty relatidd) is
uncertainty relationg5) for the individual subsystem# and ~ Not & constant but dunction of an operator expectation
B, the first sum in Eq(6) is bounded from below by 2. Since value. Thus the method presented f(_)r the EPR_—type operators
the second sum is non-negative, the left-hand side of&q. Ccannot be used_, and careful analysis of the ghffe_rent proper-
is also bounded by 2 which finishes the proof of Ef).  ties of the functiorL (N) must be don¢14]. Using inequal-
Thus for separable states the sum of the varianceg,of [ty (11) and the fact that boundlL2) fulfills L(N;)+L(N>)
+xg and pa— pg has the same lower bound as the sum of>L(N1+Nz)+L(0) we obtain
the corresponding single system uncertainties. Note that this
simple relationship holds because the right-hand side of the - 2_ /N2
uncertainty relatior{5) is aconstant On the other hand, this E”/Ek: PL (N +L(0)+N; <N>”}' a3
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FIG. 1. Numerical test of the inequalit#) for the two-mode
separability problem foN=200. (Solid) Boundary of the region
defined by Eq(4). All states below this line are entangleia-
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1
Ly(N)= \/W(l—W) N+ 1

(N=Npw(1—-w) if

17

Here N, =(1—w)/4w. Inequality (16) is the generalization

of Eq. (11) for unequal weights for the two variances. For
N<N_ the functionL,,(N) is linear and the slope is deter-
mined in such a way that there is not an abrupt change in the
derivative ofL,,(N) at N=N, .

In order to get a lower bound fax, ,, using the uncer-
tainty relation(16), one has to follow similar steps as in Sec.
IIA. Using the facts that_,,(N;)+L(N,)=L,(N;+N>)
+L,,(0) is fulfilled andL,,(N) +wN? is a concave function
of N, the lower bound for,, is obtained asf,(N)
=L(N)+L(0).

C. Proof of main result

monds Points corresponding to separable states found numerically.

Inset: (solid) boundary of the region defined by E); (dashed
boundary of the region defined by Ed.4) for w=0.3 and 0.7.

Now using the fact thalt (N,) + Nﬁ is a concave function of

Ny, we obtainX ,=L(N)+L(0) which proves Eq(7).
Condition (7) corresponds to a line on the

(A,N)?-A,(a—b)]? plane(solid line in the inset of Fig.

In this section Eq(4) will be obtained by determining the
curve which has the lines corresponding to differerg as
its tangentials. The tangentials of a hyperboka+gg)
=C/(x+cg) are given bywx+(l-w)y=2yw(1l-w)C
—Co. One can reformulate Eq14) by replacing the right-
hand side by a slightly weaker lower bound which fits this

1). All separable states belong to points above this line and

fulfill Eq. (7). Points below this line correspond to entangled

states only.

B. Generalization

form,
Tu(N)=\Vw(1—w)(N+3)—1.

Hence the equation for a hyperbola on trmpl(\l)z—[Ap(a
—b)]? plane can be obtaingdolid curve in Fig. 1 Inequal-

(18

We would like to find more entangled states in thelly (4) corresponds to points above this hyperbola. Any state

(A,N)2-A,(a—b)]? plane. In order to do that we general-

ize Eq.(7) as

2, w=WAN)?+(1-W)[A (a—b)]*=f,((N),), »

which violates this inequality is necessarily entangled.

Ill. DISCUSSION

First, the tightness of the necessary condition for separa-
bility (4) should be verified. Numerical checks show that it is

where 0<w<1 determines the relative WelghtS of the two quite Strong(see F|g J_ The diamonds indicate product

terms andf,,(N) is defined at the end of this section. In-

states of the formf0)®|W¥) found numerically. The state in

equality (14) corresponds a region above a line with slopethe origin of Fig. 1, giving zero for both variances in Ed4),

w/1—w (dashed lines in the inset of Fig). IThese lines are
the tangentials of the curve enclosing all separable states.

is state(2) as can be shown as follows. Eigenstate&l@f/ith
particles have the forW)=3Xc,|n,N—n). The state &

the points below this curve correspond to entangled states._ b)|W) hasN—1 particles, thusg—b)|W)=\|W) is pos-

In order to obtain the lower bounid,((N),), we have to

follow a procedure similar to what was presented in the pre

ceding section. For a separable state one obtains
Ep,wzﬁk PW(A AN+ (1—W)(A 22)°+W(A 8Ng)
+(1—w)(ApEb)2+wN§—w(N>§}. (15)

In Appendix A 3 we prove the following uncertainty rela-
tion:

Row=W(A Na)?+(1=W)(A,2)2=L,((Na),), (16)

where

sible only if the eigenvaluen=0. A state for which &
—Db)|¥)=0 has to fulfill c,,,;Yn+1=c,/N—n. This de-
termines the state uniquely as E#g).

Our method detects entangled states in the proximity of
state(2) on the AN)2—[A(a—b)]? plane as shown in Fig.
1. (In this section we will omit the index,) Other interesting
states on the A\N)?>-[A(a—b)]? plane: A separable state
having (AN)?=0 is the convex combination of products of
Fock stategn,)|N—ny). For thesd A(a—b)]?=N. Sepa-
rable states with perfect destructive interference between the
modes havind A(a—b)]?=0 are the convex combination
of products of coherent states of the form,)|a,+c),
wherec is a constant common for all product subensembles.
For these statesAN)?=N [12].
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According to our criterion, to detect entanglement in anThe sufficient condition for inseparability ig—iJ#0,

expenmer)t, the variances of and (a—b) shoulq be mea- wherey is the correlation matrix corresponding to the par-
sured. A simpler scenario is to measure the variandé¢ arfid

_ N ; - _ _ tially transposed density matrix ar;=i[ Ry ,R|]. Here;/
((@'-b")(a—b)). Since [A(a—b)]*’<((a’-b)(a~b)) "< _ .
inequality 2(7) can 1Lbe Jrused for this case r_alft(_er replfa\cing I;\]/I/o %;Cgf tvr\]/ﬁhSItzt: ;,?n:ﬁtedriteiﬁfg Sie?dn;(?rnglr(iatgrim)
'Er?e(a;rlt)i?le E?Jlngi)ir_inbt%(ear;z)iz :T(t;e_ls;t/er\/ils JustIWICE  yescribed in the Introduction, our criterid), (7), and (14)
Tlr31e eneration of stai) is never perfect .thus the svs- cannot be reduced to an entanglement witness. This is be-
tem is ?n a mixed state. Our methog makés it possib)lle Sause they contain the variance of the particle number and
detect entanglement even in this case(Hf'b’)~(AN)>2 c2N) cannot be set to zero by single-party unitary operations.

the maximum particle number variance for a state to be de-

tected is AN)?o VN, which is much smaller than for coher- IV. CONCLUSIONS
ent states. On the other hand, for perfect destructive interfer-
ence whenb’Tb’)~0 the maximal variance isA(N)2=N.

Equation (2) describes the quantum state of a Bose-
Einstein condensate of atoms, if theand b modes corre-
spond to the two halves of the condenddt®]. In this case
(a'+b") creates a particle in stat@) and Eq.(2) describes
a product of single-particle states of the forinkr)®|¥)
®---®|W). Although it is a product state from the point of
view of the individual particles, in thén,m) basis it is
clearly entangled. In order to detect entanglement, one nee
to measure the variance of the total particle number and th
particle number in one of the new modes after the two halveﬁ,]
of the condensates interfef5,16).

The condensate can be “split” into two modes, realizing
state(2), and then reunited for detection in a Mach-Zehnde
type interferometer16]. The statg2) can also be obtained in
a Bose-Einstein condensate of two-level atoms, by preparing ACKNOWLEDGMENTS
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entanglement, assuming perfect destructive interference at

the second beam splitter, for the photon sour(zh'\II2 APPENDIX: SINGLE-MODE UNCERTAINTY RELATION
<N/4—7/8 is required. This can be obtained, for example,
with a state with sub-Poissonian number statistics.

Besides experimental considerations, the advantage of our In this section we will prove Eq(11). We will find a
approach is the ability to detect states in the vicinity of thelower bound for the sum of the two variances,(,)? and
entangled statg¢2) which is not detected by the method (Apa)2 for any single-mode quantum state. This uncertainty
based on the correlation matfi®,10]. The correlation matrix relation is needed to find a lower bound for the sum of op-
y contains the correlations of two pairs of conjugate single-€rator variances for two-mode separable states in(Bq.
party observables, which now we choose to PR} The first term on the left-hand side of Ed1) is zero for
={Xa,Pa X5 :Pg} Here xa=(a+a")/\V2, pa=(a number states. The second.term is zero for coherent states.
—a")/(y2i), andxg andpg are defined similarly for the ~ Na anda have a common eigenvector: for the sted the

mode. For the staté?) the correlation matrixy, = Tr{p(Ry variances of both are zero. In order to find a nontrivial rela-
—(RN(R—(RN+Tr{p(R—(R))(R«—(R))} is ob- tion, the lower bound for the sum of the two variances must

tained as have at least one parameter. We choose this parameter to be
(Na),. For(N,),>0 the operatordN, anda do not have
common eigenvectors and the sum of the two variances are

In summary, a simple inequality for the expectation values
of observables was proposed for entanglement detection.
Since only the measurement of easily accessible quantities
(particle numbers and particle number varian@e needed,
this approach may be feasible for detecting entanglement ex-
perimentally in Bose-Einstein condensates or in a two-mode
photon field.

Our method can be generalized for detecting other highly
(intangled states. First two operators must be identified which

e the state as an eigenstate. Then a necessary condition

r separability must be constructed with the variances of
ese operators. Such a highly entangled state is, for ex-
ample, the|N,0)+|0,N) Schralinger cat state which is the
eigenstate oN and @'b)N+ (abhHN.

1. Analytic calculation

N+1 0 N 0 bounded from below.
0 N+1 0 N The proof of Eq.(11) is based on finding two lower
y= (190  bounds for the left hand side of E(l1) and then combining
N 0 N+1 0 them. Let us denotéa),=a(Na),€e'®, where O<a<1.
0 N 0 N+1 The first lower bound is
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R,=(A,2)%=(1-a)(Na),=:By(Na,@). (A1)
The second bounfl8] is obtained from
Ro=(A,Na)?+ 3[(A xa)?+ (A,pa)’]—3
=\2(A,NA) (A X0+ (A,pa) ] 3. (A2)

Here for the inequalityX?+Y?=2XY was applied. Now,
using the facts that X,Na)%(A,Xa)?=|(pa),|?/4 and
(A, N)2(A,pa)?=](Xa),|?/4 we obtain

[(Xa)ol“+{Pa),|* 1
sz\/ 3
1
=l@l-5
1
= Va<NA>p_§
::Bz(NA,CY). (A3)

From Egs.(Al) and (A3) one can derive a higher lower
bound for Eq.(11) by taking the maximum of these two
bounds. It can be shown that

Bi(N,a) if a=q,
B(N,a)-—ma){Bl,Bz]— BZ(N,a) |f agaL,
(Ad)
where
3 1
=1+ ———. A5
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FIG. 2. (Diamond$ The minimum ofR, [for a definition see
Eq. (11)] if the particle number is constrained My, . (Solid) The
analytic lower bound.(N,) defined in Eq.(12). The inset shows
the wave function in the number bag@iamond$ corresponding to
the minimum of uncertainties fdi,=20. The results fit very well
a Gaussian curvésolid).

mine the state vector minimizing the left-hand side of Eq.
(1) and the corresponding minimum with the constraint
(a'a)=N,.

The wave function is given in the number basis as

|‘I’>:2k clk). (A7)
The left-hand side of Eq11) can be rewritten as
2
sz[z |ci|2k2— N2 +|NA—E CECyp K+ 1 }
k k
(A8)

Here o is always non-negative, however, for small particle

numbersN<1/4 it is larger than 1.
The lower bound for Eq.11) will be constructed by mini-
mizing B(N,«a) with respect toa. After some algebra one

obtains
[ 0

As stated in Sec. Il A, in order to use this result in the two

N+3—1 if N>3,
min B(N,«)=

a

if N<% (A0
<i.

teria (i) L(N)+N? should be concave(ji) L(N;)+L(N,)
=L(N;+N,)+L(0). Thebound Eq.(A6) does not fulfill

(i), thus a weaker bound satisfying this condition has to be

chosen.L(N), as defined in Eq(12), is such a bound. It
coincides with Eq(A6) for N=1/4, while forN<1/4 it is
negative.

2. Numerical verification

Lagrange multipliers must be added in order to constrain the
particle number tiN, and keep the norm one

g({Cemb {Cmb 1, 2)
Ry Na= 3 6|~ 1- [,

(A9)

-When minimized, all the derivatives of EGA9) must be
mode separability problem the bound should fulfill two cri-

zero. Moreover, sinc®,({c})=R,({|ck|}) we can restrict
our search for the minimum for rea}’s. Hence one obtains

2
[N +un+ uo [ n
Cn+1_ A r—n+1 n n+1 Cn,]_, (AlO)

where A=(a)=3c,c,1Vk+1 and the term withc,_, is
not present fon=0. FromA, uq, andu, the unnormalized
wave function can be constructed by settoyg=1. As can

In this section we prove by numerical calculations thatbe seen in Fig. 2,.(N,) defined in Eq(12) is very close to

Eq. (12) is a tight lower bound for Eq(11). We will deter-

the minimum found numerically, thus it is a tight bound. The

062310-5
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wave function minimizingR,, is shown in the inset. In the W
number basis it fits very well a Gaussian curve even for Vo — (A12)
: 4N(1 w) AN(1—w)
small particle numbers.
Hence the lower bound dep,W is obtained as

3. Generalized single-mode uncertainty relation \/ 1" w 1
In this section we will prove Eq.16). Forw=0 the state min B,,= w(1-w)| N+ 4) 2732 it N>N,
minimizing R, , is a coherent state, fav=1 it is a number @ 0 if N<N
<N,,

state. For intermediate’s the wave function giving the
minimum interpolates between these two. Thg((Ny),)
bound can be obtained, after insertiwgand (1—w) in the  whereN = (1—w)/4w.
expression to be minimized, by following the same steps as As stated in Sec. II B, in order to use these results in the
in part 1 of the Appendix. The two bounds found will be  two-mode separability problem the bound should fulfill two
criteria (i) L(N)-+wN? should be concavef(ii) L(N;)
B1iw(Na,@)=(1—w)(1—a)Nj, +L(N2)=L(N;+N,)+L(0). Equation(A13) does not ful-
’ fill (i), thus a weaker bound satisfying both conditions has to
be chosenL,,(N) as defined in Eq(17) is such a bound. It
1-w coincides with Eq(A13) for N=N, while for N<N_ itis a
Bow(Na,@)=yW(1-w)aNy———.  (All) linear function ofN and it is negative. The function giving
L, (N) for N>N, [top line in Eq.(A13)] cannot simply be
extended toN<N, as it was done in part 1 of the Appendix
The maximum of these twoB,(N,«), can be obtained for the simpler uncertainty relation, since in this case
knowing thatB;,,(N,«)>B,,(N,a) if a>a, where would not be satisfied.
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