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The minimum requirements for entanglement detection are discussed for a spin chain in which the spins
cannot be individually accessed. The methods presented detect entangled states close to a cluster state and a
many-body singlet state, and seem to be viable for experimental realization in optical lattices of two-state
bosonic atoms. The entanglement criteria are based on entanglement witnesses and on the uncertainty of
collective observables.
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I. INTRODUCTION

Recently attention has been drawn to optical lattices[1–4]
as promising candidates for the realization of large scale
quantum information processing. Successful experiments
have been done by applying state-dependent lattice potentials
for atoms with two internal states. The lattices were dis-
placed with respect to each other and then returned to their
original position, making neighboring sites interact, realizing
a phase gate, and ultimately a spin chain dynamics[3]. These
operations have recently been successfully used to entangle
cold atoms on a large scale[4]. As a next step, it is very
important both theoretically and for quantum information
processing applications to prove that the quantum state cre-
ated is entangled. This is, however, a very difficult problem
[4] which has hardly been considered(with the exception of
Refs.[5,6]).

Entanglement detection in an experiment is a hard prob-
lem, since reconstructing the whole density matrix is usually
not possible and the quantum state is only partially known.
One can typically measure a few observables yet still would
like to detect some of the entangled states. The situation is
even more difficult for lattices of two-state atoms created
with today’s technology since the lattice sites are not acces-
sible individually[4]. In this paper we will present scenarios
where highly entangled states are detected based on very
small amount of acquired knowledge: by the measurement of
collective quantities. Our schemes are viable with present-
day or near-future technology.

The methods to be presented detect entangled states close
to cluster states[7,8] and many-body singlets. Cluster states
can easily be created in a spin chain with nearest-neighbor
interaction[7] and have recently been realized experimen-
tally in optical lattices[4]. They are more immune to deco-
herence than other states with genuine multi-qubit entangle-
ment [8] and can be used as a resource for measurement
based quantum computation[7]. States with zero total angu-
lar momentum are also of considerable importance. One ex-
ample of such a many-body singlet state is a chain of two-
qubit singlets which can serve as a resource for teleportation
and quantum communication. A singlet of two large spins
has already been studied in a photonic system[9]. Four-qubit
singlets have recently been created with photons for decoher-

ence free quantum information processing[10]. Optical lat-
tices arise naturally as candidates for realizing many-body
singlets, for example, as a ground state of Heisenberg chains.
Note that neither cluster states nor singlets are detected by
the spin squeezing criterion[5], which is another approach
for entanglement detection with global measurement.

All our results are based on the following simple consid-
erations. We will build entanglement criteria with the three
coordinates of the collective angular momentum,Jx/y/z. These
quantities can be obtained directly by population difference
measurements, without the use of multi-qubit operations.
There are now two approaches for entanglement detection.

(i) Entanglement can be detected by measuring only
kJx/y/zl if the collective measurement is preceded by some
multi-qubit quantum dynamics.

(ii ) Without preceding dynamics an entanglement crite-
rion must involve second or higher-order moments of the
angular-momentum coordinates. However, an entangled state
(e.g., a cluster state) cannot be detected this way if there
exists a separable state giving the same values for the mo-
mentskJx/y/z

m l.
In this paper three necessary conditions for separability

will be presented. If these are violated then the system is
entangled. The first one is based on an entanglement witness,
i.e., a criterion linear in expectation values[11]. Connected
to it, an experimental scheme is described to measure the
entanglement lifetime of a cluster state. This scheme is vi-
able with present-day technology[4]. The second method
detects also states close to a cluster state, using uncertainties
of collective observables[12–14]. In both cases one has to
measure a component of the collective angular momentum
after an evolution under a simple Hamiltonian. The third
method is based on measuring uncertainties of all the collec-
tive angular-momentum components without a preceding dy-
namics and is a generalization of the approaches of Refs.
[9,13] for detecting many-body singlets. In the following we
will use the notion of spin chains and lattices of two-state
atoms interchangeably.

II. ENTANGLEMENT DETECTION WITH A WITNESS
OPERATOR

In this section we will show that for all separable states,
i.e., states that can be written as
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l

plrl
s1d
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s2d
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in a chain ofN qubits the following expression involving
third order correlations is bounded from above:

J: =Ko
k=1

N

s̃x
skdL ø

N

2
, s2d

where s̃x
skd=sz

sk−1dsx
skdsz

sk+1d. Here for the end of the chain
sz

s0d=sz
sN+1d=1 and for simplicity,N is taken to be even.

Later it will be shown how the left-hand side of Eq.(2) can
be measured as thex component of the collective angular
momentum after an evolution under a simple Hamiltonian.

In order to prove criterion(2), first it will be proved that
for a product state

Jk: = ks̃x
skd + s̃x

sk+1dl = ksz
sk−1dsx

skdsz
sk+1dl + ksz

skdsx
sk+1dsz

sk+2dl

ø uksx
skdlksz

sk+1dlu + uksz
skdlksx

sk+1dlu ø 1. s3d

Note thatJk involves a quadruplets of spinssk−1d, skd, sk
+1d, andsk+2d. The upper bound in Eq.(3) was found using
the Cauchy-Schwarz inequality and knowing thatksxl2

+kszl2ø1. This bound holds for any product state, and since
Jk is linear in expectation values, it also holds for any sepa-
rable state.

The lower bound forJ is then J=okJ2k+1øN/2. (Note
that this sum involvesN/2 overlapping quadruplets corre-
sponding toJ1,J3,J5, . . .) This proves criterion(2). The up-
per bound in Eq.(2) is also the lowest possible, since the
separable stateu+1lxu+1lzu+1lxu+1lz¯ saturates the inequal-
ity.

Next a lower bound of the number of entangled qubit
quadruplets will be deduced from the degree of violation of
criterion (2). If the quadruplet of spinssk−1d, skd, sk+1d,
and sk+2d is separable, then −1øJkø1. If it is entangled,
then −2øJkø2. Hence a lower limit for the number of en-
tangled overlapping quadruplets isJ−N/2. The minimum
number of nonoverlapping entangled quadruplets is half this,
NqùJ/2−N/4.

The criterion(2) is maximally violatedonly for a cluster
statesJ=Nd. This state is defined as the eigenvector of the
following three-qubit operators

sz
sk−1dsx

skdsz
sk+1duCl = lkuCl, s4d

where 1økøN andlkP h−1, +1j. We detect a cluster state
with lk= +1 for all k’s.

The spin squeezing criterion[5] does not detect cluster
states as entangled. This criterion is based on the necessary
condition for separability NsDJnW1

d2/ skJnW2
l2+kJnW3

l2dù1,
whereJnWk

is the total angular momentum in the directionnWk

and thenWk’s are perpendicular to each other. The state is not
detected since for cluster stateskJnWl=0 for anynW.

Now we will discuss how to measureJ. It is known [7]
that UPGsx

skdUPG=sz
sk−1dsx

skdsz
sk+1d, where UPG=exphi p

4 oks1
−sz

skdds1−sz
sk+1ddj denotes an operation implementing a

phase gate for all neighboring spins. Hence the three-qubit
correlation termss̃x

skd can be measured by applyingUPG to

the chain and then measuringsx
skd. Also, J can be obtained by

applying UPG and then measuring thex component of the
collective spin. This measurement procedure can only be
used to detect entanglement if the real dynamics of the sys-
tem is known to sufficient accuracy[15]. (However, criterion
(2) can also be used without a need for multi-qubit dynamics
if the particles are individually accessible. In this case only
two measurement settings are needed for the
u±1lxu±1lzu±1lxu±1lz¯ and u±1lzu±1lxu±1lzu±1lx¯ bases.)

Recently, when experimentally creating a cluster state the
effect of decoherence has been observed in the decreasing
visibility of the interference patterns[4]. Based on the pre-
vious paragraphs, we propose the measurement ofJ as de-
fined in Eq. (2) to study the effect of decoherence[8] on
many-body entanglement quantitatively.(Without the many-
qubit dynamics it is hard to observe the decoherence of a
cluster state since for the whole processkJx/y/zl=0.) The mea-
surement scheme is as follows. First a cluster state is created
starting fromu1111. . .lx, followed by the application ofUPG.
Then we let decoherence affect the system for timetd. Fi-
nally, we useUPG again. This would ideally restore the initial
state. However, due to decoherence the measurement of the
collective spinJ in the x direction will give less than the
maximalN. The effect of decoherence can easily be followed
via the decrease ofJ with td.

The influence of a single phase-flip channel acting on spin
skd is given by a completely positive map asekr=pr+s1
−pdsz

skdrsz
skd where pstdd=f1+exps−ktddg /2. Assuming that

all these channels act in parallel one obtainsJspd /N=2p−1.
(In the computations it was used thatJ=N−2 andJ=N−4
for sz

skdrclsz
skd and sz

skdsz
sldrclsz

sldsz
skd ;kÞ l, respectively.) The

state of the system is detected as entangled by criterion(2) if
p.0.75. The lower bound for the entanglement lifetime
measured this way is independent of the size of the system,
and as we will show, it is a quite tight bound. Following the
approach of Ref.[8], one can show that the reduced density
matrix of two neighboring qubits is entangled ifp.0.71.
The entanglement lifetime computed from criterion(2) is
20% shorter than the lifetime computed with the latter ap-
proach. The difference is slightly smaller for the partially
depolarizing channel.

III. ENTANGLEMENT DETECTION WITH UNCERTAINTY
RELATIONS

The previous approach detects cluster states withlk= +1
eigenvalues for the defining Eqs.(4). By modifying Eq.(2),
one finds that for separable states

o
k=1

N

ks̃x
skdl2 ø

N

2
. s5d

Squaring the expectation value makes it possible to detect
bothlk= ±1. A similar approach for constructing a nonlinear
expression from an entanglement witness has been recently
presented in Ref.[12].

An expression equivalent to Eq.(5) can be obtained using
the variances ofs̃x

skd, oksDs̃x
skdd2ùN/2. Based on this, a col-
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lective measurement scheme can be defined with the follow-
ing three operators:

X1/2/3: = o
3k+1/2/3

s̃x
skd. s6d

X1/2/3 is the x component of the collective angular-
momentum operator for every third spin starting from spin
1/2/3,afterUPG was executed. With these, a necessary con-
dition for separability can be obtained

o
m=1

3

sDXmd2 ù
N

2
. s7d

The proof of Eq. (7) is the following. For a separa-
ble state sDX1d2+sDX2d2+sDX3d2ùolplhsDX1dl

2+sDX2dl
2

+sDX3dl
2j=olploksDs̃x

skddl
2ùolplkNll /2=N/2. Here index l

refers to thelth subensemble.
Note that while the measurement of a single operator was

enough to construct the entanglement witness, an entangle-
ment criterion with observable uncertainties usually involves
at least two or three operators[12–14]. In our case, distrib-
uting the s̃x

skd terms into less then three operators would
make it impossible to useomsDXmdl

2=oksDs̃x
skddl

2 in the pre-
vious derivation.

IV. ENTANGLEMENT DETECTION WHEN THE
PARTICLE NUMBER VARIES ON THE LATTICE

The previous two approaches can straightforwardly be
used for entanglement detection in optical lattices of bosonic
atoms with two internal states, if there is a single atom per
lattice site. (However, missing spins can still be easily
handled with these models.) In practice, it is difficult to pre-
pare a lattice with unit occupancy[2].

A method will now be presented which detects entangled
states even if there are several atoms per lattice site, by mea-
suring collective observableswithoutpreceding quantum dy-
namics. The necessary condition for separability(proved
later) will be

sDJxd2 + sDJyd2 + sDJzd2 ù
kNl
2

, s8d

whereN is the total particle number andJx/y/z are the collec-
tive angular-momentum coordinates. They are the sum of the
corresponding single-site Schwinger-type angular-
momentum operators. For a lattice site, omitting the index
skd, these are defined asjx=sa†b+ab†d /2, j y= isb†a−ab†d /2,
and j z=sa†a−b†bd /2, wherea andb are the bosonic destruc-
tion operators corresponding to the two internal states of the
atoms. The particle number at a site isa†a+b†b.

If the system is in a pure state and a lattice site is not
entangled with the other sites, then its state has the formC
=omcmu jm,zml. A separable state is just the convex combina-
tion of products of such single-site states. Hereu j ,zl is an
eigenstate ofjx

2+ j y
2+ jz

2 with eigenvaluejs j +1d, and ofjz with
eigenvalue z. For example, u↑ l= u1/2,1/2l and u↓ l

= u1/2,−1/2l denote a single atom at the lattice site in states
a and b, respectively, whileuØl= u0,0l denotes an empty-
lattice site.

This representation does not take into account entangle-
ment between particles within the lattice site, as expected,
and models a lattice site as a particle with a large spin. The
spin squeezing criterion[5], however, detects both entangle-
ment between particles on the same site and entanglement
between particles on different sites.

As we will show, criterion(2) is able to distinguish en-
tanglement due to particle number variance(e.g., u↑ luØl
+ uØlu↑ l) from entanglement in the internal states(e.g.,
u↑ lu↓ l− u↓ lu↑ l). Our aim is to detect the second kind of en-
tanglement. In the first case we have a superposition of states
with different on-site particle numbers. The Schwinger op-
erators commute with theNk particle number operators, thus
by measuring them one cannot distinguish between a super-
position and a mixture of such states[16]. Consequently an
entanglement condition in terms of such observables will not
take into account entanglement due to particle number vari-
ance.

The proof of criterion(8) is based on the relations

ks jx
skdd2 + s j y

skdd2 + s jz
skdd2l =KNk

2
S1 +

Nk

2
DL , s9d

k jx
skdl2 + k jx

skdl2 + k jx
skdl2 ø

kNkl2

4
. s10d

Here Eq. (9) expresses the fact that a two-mode bosonic
system has maximal angular momentum[17]. Subtracting
Eq. (10) from Eq.(9) one obtains the uncertainty relation for
spin skd

sD jx
skdd2 + sD j y

skdd2 + sD jz
skdd2 ù

sDNkd2

4
+

kNkl
2

. s11d

For separable statessDJxd2+sDJyd2+sDJzd2ùolplhsDJxdl
2

+sDJydl
2+sDJzdl

2j=olplokhsD jx
skddl

2+sD j y
skddl

2+sD jz
skddl

2j which
together with Eq.(11) proves criterion(8). Thus the uncer-
tainty relations(11) for the individual lattice sites gave a
lower bound for the uncertainties of the corresponding col-
lective quantities for separable states in Eq.(8) [13]. This
lower bound is the highest possible, sinceany pure product
statewith unit lattice site occupancy saturates the inequality.
[For atoms on the lattice a particle number conserving super-
selection rule applies, thussDNkd2=0 for all pure product
states.]

Inequality (8) is maximally violated for angular-
momentum eigenstates with total angular momentumJ=0
(many-body spin singlet). The spin squeezing criterion[5]
does not detect these states as entangled, since they have
kJx/y/zl=0.

For two atoms at neighboring lattice sites such a singlet
state isuCsingletl= u↑ lu↓ l− u↓ lu↑ l. Chains of two-qubit sin-
glets of the formCsinglet^ Csinglet^ Csinglet^¯ also maxi-
mally violate our necessary condition for separability(8). In
general, many-body singlet states are ground states of the
HamiltonianH=Jx

2+Jy
2+Jz

2. Maximal violation of inequality
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(8) can also be obtained with the ground state of the antifer-
romagnetic Heisenberg chainH=o jx

skd jx
sk+1d+ j y

skd j y
sk+1d

+ jz
skd jz

sk+1d. With a single atom at each lattice site and for even
N, the nondegenerate ground state is close to a superposition
of chains of two-particle singlets.

It is of experimental interest that substantial violation of
criterion (8) can also be achieved with a simple spin chain
dynamics with ferromagnetic nearest-neighbor coupling,
starting from the stateu↑↑ ↑¯l. Finding the appropriate
pulse sequence is a question of numerical optimization.
For example, U=exps−ih−3.2o jx

skd jx
sk+1d−9.6o j y

skd j y
sk+1d

+0.8o jz
skdjd results in a 50% violation of Eq.(8) for a chain

of N=6 atoms.
A cluster state is not detected by criterion(8) as en-

tangled. This is not possible in general with a criterion con-
taining only the momentskJx/y/z

m l. With straightforward alge-
bra one can prove that based on the moments formø4 sm
ø8d, a cluster state ofN=9 sN=17d particles is indistin-
guishable from the totally mixed statert

sNd=su↑ lk↑u
+ u↓ lk↓ud^N. The first nonzero moments ofrt

sNd areN/4 and
Ns3N−2d /16 for m=2 and 4, respectively.

Beside kJx/y/z
m l, one might consider the moments of the

more general angular-momentum componentsJnW

=ok=x,y,zaksnWdJk. However, the following separable state is
indistinguishable from a cluster state based on any such first-
or second-order moments:rs

sNd=expsipJy/4dhsu↑↑lxk↑↑u
+ u↓↓lxk↓↓ud ^ su↑↓lk↑↓u + u↓↑lk↓↑ud ^ rt

sN−2dj exps−ipJy / 4d.

Here u↑ lx/ u↓ lx = u↑ l± u↓ l. Beside having the same moments
kJx/y/z

m l for mø2 as a cluster state,rs
sNd also has the same

values forAkl=kJkJl +JlJkl ; k, l =x,y,z sAxy=Ayz=0,Azx=1d.
Thus even if there exists an entanglement criterion for

cluster states based on moments of the collective angular-
momentum components,(i) it must involve at least an
angular-momentum component different fromx, y, or z, and
(ii ) it must be at least third order. This makes the detection of
cluster states very difficult, if additional many-body dynam-
ics is not used before the measurement.

V. CONCLUSION

In summary, we have shown how to detect entangled
states close to a cluster state or a many-body spin singlet
with collective measurement in an optical lattice of two-state
bosonic atoms.
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