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We investigate how stabilizer theory can be used for constructing sufficient conditions for entanglement.
First, we show how entanglement witnesses can be derived for a given state, provided some stabilizing
operators of the state are known. These witnesses require only a small effort for an experimental implemen-
tation and are robust against noise. Second, we demonstrate that also nonlinear criteria based on uncertainty
relations can be derived from stabilizing operators. These criteria can sometimes improve the witnesses by
adding nonlinear correction terms. All our criteria detect states close to Greenberger-Horne-Zeilinger states,
cluster and graph states. We show that similar ideas can be used to derive entanglement conditions for states
which do not fit the stabilizer formalism, such as the three-qubit W state. We also discuss connections between
the witnesses and some Bell inequalities.
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I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics and
plays also a crucial role in quantum information theory.
While the properties of bipartite entanglement are still not
fully understood, the situation for multipartite entanglement
is even more unclear, since in the multipartite setting several
inequivalent types of entanglement occur. However, en-
tangled states of many qubits are needed for quantum infor-
mation tasks such as measurement based quantum computa-
tion �1�, error correction �2,3� or quantum cryptography �4�,
to mention only a few. Thus it is important both theoretically
and experimentally to study multipartite entanglement and to
provide efficient methods to verify that in a given experiment
entanglement is really present.

In this paper we will apply the stabilizer theory �2,3� for
entanglement detection. This theory already plays a deter-
mining role in quantum information science. Its key idea is
describing the quantum state by its so-called stabilizing op-
erators rather than the state vector. This works as follows: An
observable Sk is a stabilizing operator of an N-qubit state ���
if the state ��� is an eigenstate of Sk with eigenvalue 1,

Sk��� = ��� . �1�

Many highly entangled N-qubit states can be uniquely de-
fined by N stabilizing operators which are locally measur-
able, i.e., they are products of Pauli matrices.

The main result of the present paper can be formulated as
follows: If one has a given state ��� and has identified some
of its stabilizing operators, then it is easy to derive entangle-
ment conditions which detect states in the proximity of ���.
So looking for stabilizing operators should be the first step in
order to detect entanglement. All the conditions presented are
easy to implement in experiments and are robust against
noise. We mainly consider criteria detecting entanglement

close to Greenberger-Horne-Zeilinger �GHZ� �5�, cluster �6�,
and graph states �7�. We use different types of entanglement
conditions, they may be linear criteria, such as entanglement
witnesses, or nonlinear criteria, based on uncertainty rela-
tions. In this way we complete our results of Ref. �8�, where
witnesses for the detection of multipartite entanglement in
the vicinity of GHZ and cluster states were derived. Note
that the stabilizer formalism also allows to derive Bell in-
equalities, this has been recently investigated in Ref. �9�. We
do not aim to derive Bell inequalities here, since they are
used to rule out local hidden variable models, a notion inde-
pendent of quantum physics. However, some of our con-
structions exhibit close connections to Bell inequalities, and
this will also be discussed.

Our paper is organized as follows. Since GHZ states are
the most studied stabilizer states, we use mainly them to
explain our ideas, the generalization to other stabilizer states
is then usually straightforward. So we start in Sec. II by
recalling the basic facts about the stabilizing operators of
GHZ states. Then we present a method for obtaining a family
of entanglement witnesses for detecting entanglement close
to GHZ states. First we present witnesses detecting any �i.e.,
even partial or biseparable� entanglement. Then we present
witnesses which detect only genuine multiqubit entangle-
ment. We discuss some interesting connections to Bell in-
equalities. In Sec. III we present witnesses for cluster and
graph states. We also consider detecting entanglement close
to given mixed states. Finally, we present entanglement wit-
nesses for a W state. It is of interest since the W state does
not fit the stabilizer framework. We show that our ideas can
still be generalized for this case. In Sec. IV we present non-
linear entanglement conditions in the form of variance based
uncertainty relations. It turns out that they can often improve
the witnesses by adding nonlinear terms. In Sec. V we
present entanglement conditions which are based on entropic
uncertainty relations. Finally, in the Appendices we collect
some basic facts about the stabilizer formalism and present
some technical calculations in detail.
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II. GHZ STATES AS EXAMPLES OF STABILIZER STATES

Let us start by introducing the stabilizer formalism using
the example of GHZ states. An N-qubit GHZ state is given
by

�GHZN� =
1
�2

��0��N + �1��N� . �2�

Besides this explicit definition one may define the GHZ state
also in the following way: Let us look at the observables,

S1
�GHZN�

ª �
k=1

N

X�k�,

Sk
�GHZN�

ª Z�k−1�Z�k� for k = 2,3, . . . ,N , �3�

where X�k�, Y�k�, and Z�k� denote the Pauli matrices acting on
the kth qubit. Now we can define the GHZ state as the state
�GHZN� which fulfills

Sk
�GHZN��GHZN� = �GHZN� �4�

for k=1,2 , . . . ,N. One can straightforwardly calculate that
these definitions are equivalent and the GHZ state is
uniquely defined by the Eqs. �4�. From a physical point of
view the definition via Eqs. �4� stresses that the GHZ state is
uniquely determined by the fact that it exhibits perfect cor-
relations for the observables Sk

�GHZN�.
Note that �GHZN� is stabilized not only by Sk

�GHZN�, but
also by their products. These operators, all having perfect
correlations for a GHZ state, form a group called stabilizer
�2�. This 2N-element group of operators will be denoted by
S�GHZN�. Sk

�GHZN� are the generators of this group which we
will denote as S�GHZN�= 	S1

�GHZN� ,S2
�GHZN� , . . . ,SN

�GHZN��. For
more details on the stabilizer please see Appendix A.

A. Witnesses for stabilizer states

In order to show that a given state contains some en-
tanglement, we must exclude the possibility that the state is
fully separable, i.e., it can be written as

� = 

i

pi�i
�1�

� �i
�2�

� ¯ � �i
�N� �5�

with pi�0, 
ipi=1.
Before presenting entanglement witness operators, let us

shortly recall their definition. An entanglement witness W is
an observable which has a positive or zero expectation value
for all separable states, and a negative one on some en-
tangled states �10�,

Tr�W����0 for all separable states �s,

�0 for some entangled states �e.
� �6�

Thus a negative expectation value in an experiment signals
the presence of entanglement.

In this paper we will construct a family of entanglement
witnesses using the elements of the stabilizer. We will call
these stabilizer witnesses.

B. Ruling out full separability

In the following stabilizer witnesses will be used to detect
entanglement close to GHZ states. We will construct wit-
nesses of the form

W ª c01 − S̃k
�GHZN� − S̃l

�GHZN�, �7�

where S̃k/l
�GHZN� are elements of the stabilizer group,

c0 ª max
��P

�	S̃k
�GHZN� + S̃l

�GHZN���� , �8�

and P denotes the set of product states. Since the set of
separable states is convex, c0 is also the maximum for mixed
separable states of the form Eq. �5�.

Clearly, if we want to detect entangled states with W, we

must choose S̃k
�GHZN� and S̃l

�GHZN� such that the maximum of

	S̃k
�GHZN�+ S̃l

�GHZN�� for entangled quantum states is larger than
the maximum for separable states. Whether this condition

holds depends on the question whether the S̃k
�GHZN� and

S̃l
�GHZN� commute locally.

Definition 1: Two correlation operators of the form

K = K�1�
� K�2�

� ¯ � K�N�,

L = L�1�
� L�2�

� ¯ � L�N�, �9�

commute locally if

for every n � 1,2, . . . ,N�:K�n�L�n� = L�n�K�n�. �10�

Using Definition 1, we can make the following statement.
Observation 1: Two multiqubit correlation operators, K

and L, commute locally iff there is a pure product state
among their common eigenstates.

Proof: K and L commute locally iff for all n
� 1,2 , . . . ,N� there are two vectors, ��n� and ��n

��, which
are common eigenstates of K�n� and L�n�. Thus ���= ��1�
� ��2� � ¯ � ��N� is a common eigenstate of K and L. �

Hence it follows that if S̃k
�GHZN� and S̃l

�GHZN� commute locally

then the maximum of 	S̃k
�GHZN�+ S̃l

�GHZN�� for separable and
entangled states coincide.

After these considerations, we construct our witness from
two locally noncommuting stabilizing operators.

Theorem 1: A witness detecting entanglement around an
N-qubit GHZ state is

Wm
�GHZN�

ª 1 − S1
�GHZN� − Sm

�GHZN�, �11�

where m=2,3 , . . . ,N.
Proof: The proof is based on the Cauchy-Schwarz in-

equality. Using this and 	X�i��2+ 	Z�i��2�1, for pure product
states we obtain

	S1
�GHZN�� + 	Sm

�GHZN��

= 	X�1��	X�2�� ¯ 	X�N�� + 	Z�m−1��	Z�m��

� �	X�m−1����	X�m��� + �	Z�m−1����	Z�m���

� �	X�m−1��2 + 	Z�m−1��2�	X�m��2 + 	Z�m��2 � 1.

�12�
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It is easy to see that the bound is also valid for mixed sepa-
rable states. This proof can straightforwardly be generalized
for arbitrary two locally noncommuting elements of the sta-
bilizer. �

Witnesses can be constructed with more than two ele-
ments of the stabilizer as

Ŵm
�GHZN�

ª 1 − S1
�GHZN� − Sm

�GHZN� − S1
�GHZN�Sm

�GHZN� �13�

for m=2,3 , . . . ,N rule out full separability. This can be
proved in a similar calculation as in Theorem 1, using the
fact that 	X�i��2+ 	Y�i��2+ 	Z�i��2�1. Later, in Sec. IV we will
see how these conditions can be improved by adding refine-
ment terms which are quadratic in the expectation values.

C. Criteria for witnesses

Having derived the first entanglement witnesses, it is now
time to ask, whether they are really useful witnesses. In fact,
there are, for a given state, always infinitely many witnesses
allowing the detection of this state. However, some of them
are more useful than others. Two criteria for the usefulness of
witnesses are of interest: First, it is important to characterize
how much a witness tolerates noise. Second, it is crucial to
know, how much experimental effort is needed to measure
the witness.

Witnesses are usually designed to detect entangled states
close to a given pure state ���. From a practical point of
view it is very important to know, how large neighborhood
of ��� is detected as entangled. This can be characterized in
the following way.

Definition 2: Let the density matrix of the state obtained
after mixing with white noise be given by

��pnoise� ª pnoise

1

2N + �1 − pnoise����	�� . �14�

Here pnoise determines the ratio of white noise in the mixture.
Then, the robustness to noise for a witness W is determined
by the maximal noise ratio for which it still detects ��pnoise�
as entangled.

It is easy to see that witness W detects ��pnoise� as en-
tangled if pnoise� plimit where

plimit ª
− 	GHZN�W�GHZN�

2−N Tr�W� − 	GHZN�W�GHZN�
. �15�

To give an example, for witnesses of the form Eq. �7� we
have plimit= ��−1� /� where

� ª

	GHZN�Sk
�GHZN� + Sl

�GHZN��GHZN�
max��P�	Sk

�GHZN� + Sl
�GHZN����

. �16�

Clearly, the maximum of the numerator is 2, while the mini-
mum of the denominator is 1. Thus the maximum noise tol-
erance achievable by a witness of the form Eq. �7� is given
by plimit=1 /2. Witnesses Wm

�GHZN� from Eq. �11� have exactly
this noise tolerance thus they are optimal among stabilizer

witnesses with two correlation terms. Witnesses W̃m
�GHZN�

from Eq. �13� detect ��pnoise� as entangled if pnoise�2/3,
thus, they are more robust against noise. It can be proved that

Eq. �13� is optimal among stabilizer witnesses with three
correlations terms from the point of view of noise tolerance.

The experimental effort needed for measuring a witness
can be characterized by the number of local measurement
settings needed for its implementation �11�.

Definition 3: The local decomposition of a witness is de-
fined as follows: Any witness can be decomposed into a sum
W=
iMi where each of the terms Mi can be measured by a
local measurement setting. One local setting O�k��k=1

N con-
sists of performing simultaneously the von Neumann mea-
surements O�k� on the corresponding parties. By repeating the
measurements many times one can determine the probabili-
ties of the 2N different outcomes. Given these probabilities it
is possible to compute all two-point correlations 	O�k�O�l��,
three-point correlations 	O�k�O�l�O�m��, etc.

It is easy to see that measuring only one setting is not
enough for entanglement detection. For measuring all the
witnesses Wm

�GHZN� given Eq. �11� for m=2,3 , . . . ,N, two
measurement settings are required for an implementation,
namely X�1� ,X�2� , . . . ,X�N�� and Z�1� ,Z�2� , . . . ,Z�N��. The wit-

nesses Ŵm
�GHZN� from Eq. �13� require a measurement of three

settings, X�1� ,X�2� , . . . ,X�N��, Y�1� ,Y�2� , . . . ,Y�N��, and
Z�1� ,Z�2� , . . . ,Z�N��.

D. Detecting genuine multipartite entanglement

Up to now we considered witnesses which detect any
�even partial� entanglement. However, for multipartite sys-
tems there are several classes of entanglement. The most
interesting class of entangled states are the genuine multipar-
tite entangled states. These are defined as follows. Let us
assume that a pure state ��� on an N-qubit system is given. If
we can find a partition of the N qubits into two groups A and
B such that ��� is a product state with respect to this parti-
tion,

��� = ���A���B �17�

then we call the state ��� biseparable �with respect to the
given partition�. Note that the states ���A and ���B may be
entangled, thus the state ��� is not necessarily fully sepa-
rable. According to the usual definition a mixed state is
called biseparable iff it can be written as a convex combina-
tion of pure biseparable states,

� = 

i

pi��i�	�i� , �18�

where the ��i� may be biseparable with respect to different
partitions. If a state is not biseparable then it is called genu-
ine multipartite entangled. In experiments dealing with the
generation of entanglement in multiqubit systems it is neces-
sary to generate and verify genuine multipartite entangle-
ment, since the simple statement “The state is entangled”
would still allow that only two of the qubits are entangled
while the rest is in a product state.

Witnesses for the detection of genuine multipartite en-
tanglement have already been used experimentally for en-
tanglement detection close to three-qubit W states and four-
qubit singlet states �12�. They used the projector on the state
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to be detected as an observable to detect entanglement. For
GHZ states, the projector-based witness reads

W̃�GHZN�
ª

1
21 − �GHZN�	GHZN� , �19�

which has also been used in an experiment �13�. This witness
detects genuine N-qubit entanglement around an N-qubit
GHZ state. The constant 1 /2 corresponds to the maximal
squared overlap between the GHZ state and the pure bisepa-
rable states, this can be calculated using the methods pre-
sented in Ref. �12�.

Witness Eq. �19� can be interpreted in the following way.

	W̃�GHZN�� is −1/2 only for the GHZ state state. For any other

state it is larger. In general, the more negative 	W̃�GHZN�����
is, the closer state ��� is to the GHZ state. It is known that in
the proximity of the GHZ state there are only states with
genuine N-qubit entanglement, so the constant in Eq. �19� is

chosen such that if 	W̃�GHZn���0 then the state is in this
neighborhood and is detected as entangled.

Now we will show that the projector-based witness Eq.
�19� can be constructed as a sum of elements of the stabilizer.
First, note that the generators of the stabilizer Sk

�GHZN� can be
used to define a very convenient basis for calculations,
namely their common eigenvectors. �GHZN� is one of them
giving a+1 eigenvalue for all Sk

�GHZN�’s. Allowing both +1
and −1 eigenvalues in Eq. �1�, 2N N-qubit states can be de-
fined which are orthogonal to each other and form a com-
plete basis. These are all GHZ states, but in different bases,
i.e., they are of the form ��x�1�

¯x�N��± �x̄�1�
¯ x̄�N��� /�2 with

x�l�� 0,1� and x̄�l�=1−x�l�. We will refer to this basis as the
GHZ state basis. This basis will turn out to be extremely
useful since all operators of the stabilizer are diagonal in this
basis.

Now, the projector onto a GHZ state can be written with
the stabilizing operators �14�

�GHZN�	GHZN� = �
k=1

N
Sk

�GHZN� + 1

2
. �20�

This can be directly seen in the GHZ basis. From Eq. �20� it
follows that the projector-based witness can also be decom-

posed into the sum of stabilizing terms, i.e., W̃�GHZN� is a
stabilizer witness. This decomposition can be used to mea-
sure the witness locally. However, the number of settings
needed seems to increase exponentially with the number of
qubits �15�. Thus we must find other stabilizer witnesses for
which measuring them is more feasible.

For detecting biseparable entanglement it was enough to
use two stabilizing operators for the witness. For the detec-
tion of N-qubit entanglement we must make measurements
on all qubits and must measure a full set of generators. This
is because we need that the expectation value of the witness
is minimal only for the GHZ state. If the witness does not
contain a full set of generators then there are at least two of
the elements of the GHZ basis giving the minimum. There is,
however, always a superposition of two basis vectors of the
GHZ basis which is biseparable. This biseparable state

would also give a minimum for our witness. Thus this wit-
ness could not be used for detecting genuine N-qubit en-
tanglement.

The main idea of detecting genuine multiqubit entangle-
ment with the stabilizing operators is the following.

Observation 2: Let us consider some of the stabilizing
operators. If this set of operators contains a complete set of
generators and for a given state the expectation values of
these correlation operators are close enough to the values for
a GHZ state, then this state must be close to a GHZ state and
is therefore multiqubit entangled.

Now we can derive the first entanglement witness.
Theorem 2: The witness

W ª �N − 1�1 − 

k=1

N

Sk
�GHZN� �21�

detects only states with genuine N-qubit entanglement.
Proof: In Eq. �21� the constant term, c0=N−1, was cho-

sen such that the observable

X	 ª W − 	W̃�GHZN� � 0 �22�

for some 	
0 is positive semidefinite. Then we have for

any state � the inequality 	 Tr��W̃�GHZN���Tr��W� which

implies that Tr��W��0 can only happen if Tr��W̃�GHZN��
�0. Thus all states detected with W are also detected by

W̃�GHZN� and W is a multiqubit witness. Clearly, we would
like to have c0 as small as possible, since the smaller c0 is,
the more entangled states W detects. Simple calculation
leads to c0=N−1. One can check that with this choice W
−2W̃�GHZN��0. �

Both witnesses W̃�GHZN� and W detect entangled states
close to GHZ states. The main advantage of W in compari-

son with W̃�GHZN� lies in the fact that for implementing it
only two measurement settings are needed, namely the ones
shown in Fig. 1�a�. The first setting, X�1� ,X�2� , . . . ,X�N��, is
needed to measure 	S1

�GHZN��, the second one,
Z�1� ,Z�2� , . . . ,Z�N��, is to measure the expectation values for
the other generators. The other characteristic to check is the
noise tolerance of the witness. The witness W detects states

FIG. 1. �a� Measurement settings needed for the approach pre-
sented in this paper for detecting entangled states close to GHZ
states and �b� cluster states. For each qubit the measured spin com-
ponent is indicated.

G. TÓTH AND O. GÜHNE PHYSICAL REVIEW A 72, 022340 �2005�

022340-4



mixed with noise of the form Eq. �14� if pnoise�1/N. Thus
the noise tolerance decreases as the number of qubits in-
creases.

However, using a similar construction it is also possible to
derive a witness which is robust against noise even for many
qubits and still requires only two measurement settings.

Theorem 3: The following entanglement witness detects
genuine N-qubit entanglement for states close to an N-qubit
GHZ state,

W�GHZN�
ª 31 − 2�S1

�GHZN� + 1

2
+ �

k=2

N
Sk

�GHZN� + 1

2
� . �23�

This witness has the best noise tolerance among stabilizer
witnesses which need only two measurement settings and

have the property W�GHZN�−	W̃�GHZN��0 for some 	
0.
Proof: To prove the first statement, one can show by direct

calculation that W�GHZN�−2W̃�GHZN��0. Thus W�GHZN� is a
multiqubit witness. For the proof of optimality see Appendix
B.

To give an example, for the simple case of three qubits the
witness is

W�GHZ3�
ª

3
21 − X�1�X�2�X�3� − 1

2 �Z�1�Z�2� + Z�2�Z�3� + Z�1�Z�3�� .

�24�

Three-qubit genuine multiqubit entangled states can belong
to the so-called W class or to the GHZ class �16�. Knowing

that W̃�GHZ3�+1 /4 detects GHZ-class entanglement �16�, we
obtain that W�GHZ3�+1 /2 detects also only GHZ-class en-
tanglement.

The witness W�GHZN� is quite robust against noise. It de-
tects states mixed with white noise as true multipartite en-
tangled for

pnoise �
1

3 − 2�2−N� . �25�

Thus it tolerates at least 33% noise, independently from the
number of qubits. Again, only two measurement settings are
necessary for an implementation �see Fig. 1�a��.

The expression for the witness W�GHZN� can be simplified
using the fact that

�
k=2

N
Sk

�GHZN� + 1

2
= �00 ¯ 0�	00 ¯ 0� + �11 ¯ 1�	11 ¯ 1� ,

�26�

where �11¯1�	11¯1� is the projector on the state with all
spins down and �00¯0�	00¯0� is the projector on the state
with all spins up. Using this one obtains

W�GHZN� = 21 − X�1�X�2�X�3�
¯ X�N� − 2�00 ¯ 0�	00 ¯ 0�

− 2�11 ¯ 1�	11 ¯ 1� . �27�

E. Bell inequalities for GHZ states

As a sidestep we will discuss now a very surprising fea-
ture of the stabilizer witnesses, namely that they are closely

related to Mermin-type Bell inequalities �17,18�. As we will
see, this relationship sheds light on the question whether and
when Bell inequalities �19–21� can detect genuine multipar-
tite entanglement.

First note that witnesses different from the previous ones
can be obtained by including further terms of the stabilizer
and using more than two measurement settings. For instance,
following the lines of the preceding section it is easy to see
that the observable:

WMermin ª 21 − S1
�GHZ3��1 + S2

�GHZ3���1 + S3
�GHZ3��

= 21 + Y�1�Y�2�X�3� + X�1�Y�2�Y�3�

+ Y�1�X�2�Y�3� − X�1�X�2�X�3� �28�

detects genuine three-party entanglement around a GHZ
state. It detects a GHZ state mixed with white noise if
pnoise�1/2. The witness WMermin is equivalent to Mermin’s
inequality �18�,

	X�1�X�2�X�3�� − 	X�1�Y�2�Y�3�� − 	Y�1�X�2�Y�3�� − 	Y�1�Y�2�X�3��

� 2. �29�

In Ref. �22� the condition given in Eq. �29� was used for
detecting entanglement in a three-qubit photonic system and
a measurement result equivalent to 	WMermin��−0.83±0.09
was obtained, thus the created state was genuine three-qubit
entangled.

For N
3 the Bell operator in Mermin’s inequality con-
tains also only stabilizing terms.

Theorem 4: For the Bell operator of the Mermin’s in-
equality �23,24�

MN ª

1

2N−1 �X�1�X�2�X�3�X�4�
¯ X�N−1�X�N�

− Y�1�Y�2�X�3�X�4�
¯ X�N−1�X�N�

+ Y�1�Y�2�Y�3�Y�4�
¯ X�N−1�X�N� − ¯ � �30�

the operator expectation value for biseparable states is
bounded by

	MN� �
1
2 , �31�

while the quantum maximum is 1. Note that a term in Eq.
�30� represents the sum of all its possible permutations.

Proof: MN can alternatively written as

MN = S1
�GHZN��

k=2

N
Sk

�GHZN� + 1

2

= �00 ¯ 0�	11 ¯ 1� + �11 ¯ 1�	00 ¯ 0� . �32�

The maximum for 	MN� for biseparable states can be ob-
tained knowing

�GHZN�	GHZN� − MN = �GHZN
−�	GHZN

− � � 0, �33�

where �GHZN
−�= ��0000¯ �− �1111¯ �� /�2. Hence for

biseparable states �,
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	MN�� � 	�GHZN�	GHZN��� �
1
2 . �34�

For fully separable states the bound is lower and is given in
Ref. �25�. �

III. WITNESSES FOR CLUSTER, GRAPH AND W
STATES

A. Witnesses for cluster states

Let us turn now to cluster states. These are a family of
multiqubit states which have attracted increasing attention in
the last years. A cluster state �CN� is defined to be the state
fulfilling the equations �CN�=Sk

�CN��CN� with the following
stabilizing operators:

S1
�CN�

ª X�1�Z�2�,

Sk
�CN�

ª Z�k−1�X�k�Z�k+1�, k = 2,3, . . . ,N − 1,

SN
�CN�

ª Z�N−1�X�N�. �35�

Witnesses similar to Eq. �11� which rule out full separa-
bility can be constructed with two locally noncommuting
operators as �26�

Wk
�CN�

ª 1 − Sk
�CN� − Sk+1

�CN� for k = 1,2, ¯ ,N − 1. �36�

This witness detects biseparable states close to an N-qubit
cluster state. The proof is essentially the same as the one for
Eq. �11�.

Note that Wk
�CN� involves only two generators which act

on at most four-qubits. This witness detects whether the re-
duced density matrix of the qubit quadruplet corresponding
to qubits �k−1�, �k�, �k+1�, and �k+2� is entangled. The
state of the rest of the qubits does not influence 	Wk

�CN��. The
witness Wk

�CN� tolerates noise if pnoise�1/2.
The following witnesses have a better noise tolerance:

Ŵk
�CN�

ª 1 − Sk
�CN� − Sk+1

�CN� − Sk
�CN�Sk+1

�CN� �37�

for k = 1,2, ¯ ,N − 1.

This witness still involves only the qubits of a quadruplet
and tolerates noise if pnoise�2/3.

Using witnesses Ŵk
�CN�, one can construct a “composite”

entanglement witness for which the noise tolerance increases
with the number of qubits.

Theorem 5: The following entanglement witness detects
entangled states close to a cluster state

Wcomp
�CN�

ª �
k=0

K−1

1 − S4k+1
�CN� − S4k+2

�CN� − S4k+1
�CN�S4k+2

�CN� , �38�

where Kª��N+2� /4� and �x� denotes the integer part of x.
The witness Eq. �38� tolerates noise if

pnoise �
2K

2K + 1
. �39�

Proof: The noise tolerance comes from direct calculation

along the lines of Eq. �15�. Note that all the terms in the
product in Eq. �38� act on disjoint sets of qubits. This is the
reason that such a composite witness can be constructed. �

One can also construct witnesses for the detection of
genuine multipartite entanglement close to cluster states,
similar as for the case of GHZ states.

Theorem 6: The witnesses

W̃�CN�
ª

1

2
− �CN�	CN� , �40�

W�CN�
ª 31 − 2� �

odd k

Sk
�CN� + 1

2
+ �

even k

Sk
�CN� + 1

2 � �41�

detect genuine N-party entanglement close to a cluster state.
W�CN� is optimal from the point of view of noise tolerance
among the stabilizer witnesses which need only two mea-

surement settings and have the property W�CN�−	W̃�CN��0
for some 	
0.

Proof: First we must prove that Eq. �40� is a multiqubit
witness. For that we must use that from a cluster state one
can generate a singlet between arbitrary qubits by local op-
erations �6�. Using the results of Ref. �27� this implies that
the maximal Schmidt coefficient of a cluster state when mak-
ing a Schmidt decomposition with respect to an arbitrary
bipartite split does not exceed the maximal Schmidt coeffi-
cient of the singlet, which equals 1 /�2. Then, from the meth-

ods of Ref. �12� it follows that W̃�CN� is a witness for multi-
qubit entanglement. After that we have to prove that Eq. �41�
is a multiqubit witness. This can be proved similarly as it has

been done for Theorem 3 using that W�CN�−2W̃�CN��0.
Concerning the optimality, see Appendix B. �

The stabilizing operators in W�CN� are again divided into
two groups corresponding to the two settings
X�1� ,Z�2� ,X�3� ,Z�4� , . . . � and Z�1� ,X�2� ,Z�3� ,X�4� , . . . � as
shown in Fig. 1�b�. Witness W�CN� tolerates mixing with
noise if

pnoise � ��4 − 4/2N/2�−1 for even N ,

�4 − 2�1/2�N+1�/2 + 1/2�N−1�/2��−1 for odd N .
�
�42�

Thus, for any number of qubits at least 25% noise is toler-
ated.

B. Witnesses for graph states

Results similar to the ones derived before hold also for
graph states �7,28�. These states are defined in the following
way: One takes a graph, i.e., a set of N vertices and some
edges connecting them. Edges of this graph are described by
the adjacency matrix �. �kl=1�0� if the vertices k and l are
connected �not connected�. Based on that one can define the
stabilizing operators
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Sk
�GN�

ª X�k� �
Neighbors

l of k

Z�l� = X�k��
l�k

�Z�l���kl. �43�

Then, the graph state �GN� is defined as the N-qubit state
fulfilling �GN�=Sk

�GN��GN�. Physically, the graph provides also
a possible generation method. The graph state can be created
from a fully separable state by using Ising interactions be-
tween the connected qubits. In fact, many useful multiqubit
states can be treated in the graph state formalism, for in-
stance also GHZ states and cluster states. The corresponding
graphs are shown in Fig. 2.

Theorem 7: A witness detecting biseparable entangle-
ment close to graph states can be given as

Wkl
�GN�

ª 1 − Sk
�GN� − Sl

�GN�, �44�

where the spins �k� and �l� are neighbors, and a witness
detecting genuine N-party entanglement can be defined as

W�GN�
ª �N − 1�1 − 


k

Sk
�GN�. �45�

Proof: The proofs are essentially the same as before. First
one must show that 1 /2− �GN�	GN� is a witness for true mul-
tipartite entanglement. Then one can prove that witnesses Eq.
�44� and Eq. �45� detect also only genuine multipartite en-
tanglement. �

Now the number of settings needed for measuring W�GN�

depends on the graph corresponding to the graph state to be
detected. For this we need the notion of colorability of
graphs. A graph is M-colorable, if one can divide the vertices
into M groups and assign to the vertices of each group a
color, such that neighboring vertices have different colors
�see Fig. 2�. For two-colorable graphs, only two settings are
needed. In this case the Sk

�GN� operators can be divided into
two groups corresponding to the two settings. In general, for
M-colorable graphs M settings are needed for measuring the
witness W�GN�. In this sense, the most settings �M =N� are
needed for the complete graph �29�.

It is, however, important to note at this point that the
colorability of the graph is not an intrinsic and physical prop-
erty of the graph state. Usually, a graph state can be repre-
sented by different graphs up to local unitaries, i.e., different
graphs G1 and G2 can result in two graph states �G1� and �G2�
which are the same up to a local change of the basis. Here,
G1 and G2 may have different colorability properties, e.g., G1

may be two colorable and G2 N colorable. The question,
which graphs give the same graph state is still an open and
challenging problem in stabilizer theory. Recently, much
progress has been achieved concerning a subclass of local
unitary transformations, the so-called local Clifford transfor-
mations �30�. Efficient algorithms have been developed
which allow the determination of all graphs which are
equivalent within this subclass of local unitary transforma-
tions. These methods can readily be used to find witnesses
with a small number of measurement settings.

C. Obtaining the fidelity of the prepared state

Let us say that in an experiment we intend to create a
GHZ state. Beside knowing that the prepared state � is en-
tangled, we would also like to know how good its fidelity is.
The fidelity could be measured by measuring the projector
on the GHZ state

F ª Tr��GHZN�	GHZN��� . �46�

However, we would encounter the same problem as with
witnesses: The number of local settings needed for measur-
ing the projector increases rapidly with the size.

Fortunately it is possible to obtain a lower bound on the
fidelity from the expectation value of our witnesses. For ex-
ample, for our GHZ witness defined in Theorem 3 we have

W�GHZN�−2W̃�GHZN��0. Hence

�GHZN�	GHZN� �
1
2 − 1

2W�GHZN�, �47�

where W�GHZN� is defined in Eq. �23�. Now a lower bound on
the fidelity FªTr��GHZN�	GHZN��� can be obtained as F�
ªTr�P���, where

P� ª
1

2
−

1

2
W�GHZN� =

S1
�GHZN� + 1

2
+ �

k=2

N
Sk

�GHZN� + 1

2
− 1 .

�48�

Note that for measuring P� only two local measurement set-
tings are needed.

Let us see how good this lower bound is for the noisy
GHZ state ��pnoise� defined in Eq. �15�. For this state we
have

F�pnoise� = 1 − pnoise�1 − 2−N� ,

F��pnoise� = 1 − pnoise�3/2 − 2−�N−1�� . �49�

The difference is F� pnoise /2 for large N. Bounds can be
obtained similarly for the fidelity with respect to the cluster
state based on

�CN�	CN� �
1
2 − 1

2W�CN� �50�

D. Witnesses for mixed states

In an experiment, after detecting entanglement in the pre-
pared state, one might be interested to measure and drop one
of the qubits and investigate the state obtained this way. Here
we assume that we do not know the measurement result thus

FIG. 2. Graphs corresponding to different graph states. �a� Star
graph and �b� cluster state graph. A graph state corresponding to a
star graph is equivalent to a GHZ state under local unitaries. �c� A
seven-vertex graph which has a triangle. Due to this it is not a
two-colorable graph.
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the system is in a mixed state corresponding to the reduced
density matrix of the remaining qubits. We will show with an
example that witnesses can easily be derived also for this
mixed state.

Let us consider a concrete example, namely, measuring a
qubit of the four-qubit cluster state.

Example 1: The witness,

W��3�
ª 1 − Z�1�Z�2� − X�1�X�2�Z�3� �51�

detects entanglement around the state �3 which is obtained
from the four-qubit cluster state

�C4�� ª �0000� + �0011� + �1100� − �1111� �52�

after the fourth qubit is measured. Note that for �C4�� we used
a local transformation in order to be able to present the clus-
ter state in a convenient form in the Z basis.

Proof: After measuring the fourth qubit, the three-qubit
mixed state is

�3 ª
1
2 ���+�	�+� + ��−�	�−�� ,

��+� ª
1
�2

��00� + �11�� � �0� ,

��−� ª
1
�2

��00� − �11�� � �1� . �53�

Note that �3 is biseparable, i.e., the third qubit is unen-
tangled from the first two.

Now we will determine the stabilizer of �3. The stabiliz-
ers of states ��±�, given with their generators, are S��±�

ª 	Z�1�Z�2� ,X�1�X�2�Z�3� , �Z�3��. We would like to detect en-
tangled states close to a particular mixture of these two
states. Any mixture of states ��±� is stabilized by the common
elements of S��±�: The stabilizer of these mixed states is
S��3�= 	Z�1�Z�2� ,X�1�X�2�Z�3��.

Based on that, a stabilizer witness Eq. �51� can now be
constructed. The constant in Eq. �51� was determined such
that W��3� detects indeed entangled states only. This can be
proved similarly to the derivation of Theorem 1. Witness
W��3� needs two measurement settings and tolerates noise if
pnoise�1/2. �

E. Entanglement witnesses with nonlocal stabilizing
operators

There are states which do not fit the stabilizer formalism,
however, it is still possible to find a simpler witness than the
one obtained by decomposing the projector. As an example
let us look at the W state �W3�= ��100�+ �010�+ �001�� /�3. For
this state, the projector-based witness is known to be

W̃�W3� = 2
31 − �W3�	W3� . �54�

It tolerates noise if pnoise�8/21�0.38 and measuring a local
decomposition of this witness requires five measurement set-
tings �15�. In this section we will present witnesses for the
�W3� state which need only three and two measurement set-
tings, respectively.

What is new with the stabilizing operators of �W3�?
Clearly, we must leave the requirement that these operators
should be a tensor product of single-qubit operators. Now the
stabilizing operators must be allowed to be the sum of sev-
eral such locally measurable terms.

A set of stabilizing operators with simple local decompo-
sition can be found in the following way. Let us assume that
we create the �W3� state from state �000� using a unitary
dynamics U. The generators of the stabilizer for �000� are

Sk
��000��

ª Z�k� for k = 1,2,3. �55�

Hence one can get the generators for a group of operators
which stabilize �W3�,

Sk
�W3� = USk

�000�U†. �56�

Let us try to find U. It must fulfill �W3�=U�000�, i.e.,
written in the Z�k� product basis we must have

1
�3�

0

1

1

0

1

0

0

0

� = �u1u2 ¯ u8��
1

0

0

0

0

0

0

0

� . �57�

Hence, u1 can be obtained. The other columns of U are not
determined by Eq. �57� and constrained only by requiring
that U is unitary �i.e., the columns of the matrix must be
orthonormal to each other�. Thus U is not unique. A possible
choice for a U fulfilling Eq. �57� is

U ª

1
�3

�X�1�Z�2� + X�2�Z�3� + Z�1�X�3�� . �58�

The generators of a group of stabilizing operators can be
obtained based on Eq. �56�,

S1
�W3�

ª

1
3 �Z�1� + 2Y�1�Y�2�Z�3� + 2X�1�Z�2�X�3�� ,

S2
�W3�

ª

1
3 �Z�2� + 2Z�1�Y�2�Y�3� + 2X�1�X�2�Z�3�� ,

S3
�W3�

ª

1
3 �Z�3� + 2Y�1�Z�2�Y�3� + 2Z�1�X�2�X�3�� . �59�

These three stabilizing operators uniquely define the W state.
Again, by multiplying them with each other, other stabilizing
operators can be found. However, with the exception of
S1

�W3�S2
�W3�S3

�W3�=−Z�1�Z�2�Z�3�, they are all nonlocal.
Now let us try to create an entanglement witness which

detects genuine multi party entanglement, but is still easier to

measure than the projector-based witness W̃�W3�. Consider
the following witness constructed from some of the elements
of the group generated by Sk

�W3�,
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W = c01 − S1
�W3�S2

�W3� − S2
�W3�S3

�W3� − S1
�W3�S3

�W3�

− c1S1
�W3�S2

�W3�S3
�W3�, �60�

where c0 and c1 are positive constants. The expectation value
of W is minimal for the W state. Constants c0 and c1 must be

determined such that for some 	
0 we have W−	W̃�W3�

�0, and also we have the possible best noise tolerance. Thus
we have the following.

Theorem 8: A witness detecting genuine three-qubit en-
tanglement around a �W3�-state is

W�W3�
ª

11

3
1 + 2Z�1�Z�2�Z�3� −

1

3

k�l

�2X�k�X�l� + 2Y�k�Y�l�

− Z�k�Z�l�� . �61�

It requires three measurement settings and tolerates noise if
pnoise�4/15�0.27.

One can also leave out the Z�k� terms. The following en-
tanglement witness detects genuine three-qubit entanglement
close to a �W3�-state:

W� ª �1 + �5�1 − X�1�X�2� − X�2�X�3� − X�1�X�3� − Y�1�Y�2�

− Y�2�Y�3� − Y�1�Y�3�. �62�

This witness requires the measurement of two settings and
tolerates noise if pnoise� �3−�5� /4�0.19. The proof is given
in Appendix C.

IV. CRITERIA USING VARIANCES AND UNCERTAINTY
RELATIONS

Let us now explain, how criteria in terms of variances can
be derived, using uncertainty relations �31–33�. In Ref. �32�
the following recipe was presented for the derivation of such
criteria, called the local uncertainty relations �LURs�. Con-
sider a bipartite quantum system and let Ai be some observ-
ables on one party, fulfilling a bound



i

�2�Ai� � UA �63�

for all states on this party. Here, �2�Ai�= 	A2�− 	A�2 denotes
the variance of the state. This inequality is an uncertainty
relation for the Ai, with UA
0 iff the observables Ai have no
common eigenstates. Let us assume that we have also ob-
servables Bi on the second system, fulfilling a similar bound

i�

2�Bi��UB. Then, we may look at the observables Mi

=Ai � 1+1 � Bi on the composite system. As it was shown in
Ref. �32� for separable states



i

�2�Mi� � UA + UB �64�

must hold, and a violation of this bound implies that the state
is entangled.

Now we show how the witness Wm
�GHZN� in Eq. �11� for

GHZ states can be improved using nonlinear terms.

Theorem 9: Let us define

A1 = X�1�X�2�
¯ X�k�,

A2 = Z�k�,

B1 = − X�k+1�X�k+2�
¯ X�N�,

B2 = − Z�k+1�, �65�

for k=1,2 , . . . ,N−1. Using these operators, the following
necessary condition for separability can be given

1 − 	S1
�GHZN�� − 	Sk+1

�GHZN�� − 1
2 �	A1 + B1�2 + 	A2 + B2�2� � 0.

�66�

Proof: For the uncertainties of observables Ak and Bk, one
has the bounds

�2�A1� + �2�A2� � 1,

�2�B1� + �2�B2� � 1. �67�

Knowing that 	X�k��2+ 	Z�k��2�1, which implies that
�2�X�k��+�2�Z�k���1 these bounds should not be a surprise.
A detailed proof which relies on the fact that A1 and A2
anticommute, is given in Appendix C. From this and the
method of the LURs Eq. �66� follows. �

Equation �66� is a nonlinear necessary condition for sepa-
rability. It can be considered as a nonlinear “refinement” of
Wm

�GHZN� in Eq. �11�, which improves the witness by subtract-
ing the squares of some expectation values. The fact that
LURs can sometimes improve entanglement witnesses was,
for bipartite systems, first observed in Ref. �34�. There, the
magnitude of the improvement for a special case was also
investigated numerically. In the given case for GHZ states it
is important to note that the LUR does not improve the noise
tolerance, when the GHZ state is mixed with white noise.
This is due to the fact that for the totally mixed state as well
as for the GHZ state the squared mean values in Eq. �66�
vanish. However, there are many states which are not of this
form and which are detected by the LUR and not by the
witness.

In fact, many of the witnesses from the preceding sections
can be improved via the method presented above. For in-
stance, one may add the extra observables A3
=X�1�X�2�

¯X�k−1�Y�k�, B3=−Y�k+1�X�k+2�
¯X�N� to the observ-

ables A1 , . . . ,B2 from above. Then �2�A1�+�2�A2�+�2�A3�
�2 and the same bound holds for the Bi. This leads to the
separability criterion

1 − 	S1
�GHZN�� − 	Sm

�GHZN�� − 	S1
�GHZN�Sm

�GHZN�� − 1
2 �	A1 + B1�2

+ 	A2 + B2�2 + 	A3 + B3�2� � 0 �68�

which improves the witness of Eq. �13�. Also the witness in
Eq. �36� can be improved using the same methods, leading to
the separability condition
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1 − 	Sk
�CN�� − 	Sk+1

�CN�� − 1
2 	Z�k−1�X�k� − Z�k+1��2

− 1
2 	Z�k� − X�k+1�Z�k+2��2 � 0, �69�

and the witness for graph states can be improved in a similar
manner.

To conclude, it turned out that LURs can improve the
presented witnesses which were designed for ruling out full
separability. The witnesses for the detection of genuine mul-
tipartite entanglement cannot be so simply improved, mainly
for two reasons. First, LURs are specially designed for bi-
partite systems, and no generalization to multipartite systems
in known so far. Second, according to our definition of mul-
tipartite entanglement a state which is a convex combination
of states which are biseparable with respect to different par-
titions is also biseparable. This implies that it is not enough
to show that a state is biseparable with respect to each par-
tition in order to show that it is multipartite entangled. How-
ever, if one defines a state to be multipartite entangled if it is
not biseparable with respect to any partition �as it is done
sometimes in the literature, see, e.g., Ref. �35�� then LURs
can be used to detect multipartite entanglement by ruling out
biseparability for every bipartite split �as proposed in Ref.
�32��.

V. CRITERIA USING ENTROPIC UNCERTAINTY
RELATIONS

Let us now discuss another possibility of deriving separa-
bility criteria in terms of uncertainty relations, namely crite-
ria based on entropic uncertainty relations. As we will see,
the stabilizer formalism allows us to formulate easily such
criteria, however, they are not as strong as the witnesses or
the variance based criteria.

The recipe to derive such criteria was described in Ref.
�33� and goes as follows: If we have an observable M we can
define P�M��= �p1 , . . . , pn� as the probability distribution of
the different outcomes for measuring M in the state �. One
can characterize the uncertainty of this measurement by tak-
ing the entropy of this probability distribution, i.e., by defin-
ing H�M�ªH�P�M���. Here, we only consider the entropy
to be the standard Shannon entropy H�P�ª−
kpk ln�pk�,
however, a more general entropy like the Tsallis entropy may
also be used. Given two observables M and N which do not
share a common eigenstate, there must exist a strictly posi-
tive constant C such that H�M�+H�N��C holds. The diffi-
culty in this so-called entropic uncertainty relation �EURs�
lies in the determination of C. For results on this problem see
Refs. �36,37�. For the detection of entanglement, the follow-
ing result has been proved �33�: Let A1, A2 and B1, B2 be
observables with nonzero eigenvalues on Alice’s �respec-
tively, Bob’s� space obeying an EUR of the type

H�A1� + H�A2� � C �70�

or the same bound for B1, B2. If � is separable, then

H�A1 � B1�� + H�A2 � B2�� � C �71�

holds. For entangled states this bound can be violated, since
A1 � B1 and A2 � B2 might be degenerate and have a common
entangled eigenstate.

In order to apply this scheme to the detection of entangle-
ment in the stabilizer formalism we must recall some more
facts. Assume that we have two observables of the form M
=
�iPi and N=
 j� jQj where the Pi, Qj are the projectors on
the eigenspaces. Here, we do not require M and N to be
nondegenerate, i.e., the Pi and Qj may have ranks larger than
one. In this situation, it was shown in Ref. �37� that for these
observables the EUR,

H�M� + H�N� � − ln max
ij

Zij �72�

holds, where Zij = �PiQj�=max����	���PiQj�†�PiQj���� is the
norm of the operator PiQj. This has two consequences. First,
it follows immediately that for one qubit

H�X� + H�Y� � ln�2� , �73�

holds, and similar relations hold for Y, Z etc. Second, if A is
an observable consisting of Pauli measurements on N qubits,
e.g., A=X�1�Y�2�

¯Z�N�, then for N+1 qubits the EUR

H�A � X�N+1�� + H�12N � Y�N+1�� � ln�2� , �74�

holds. Here 12N denotes the identity on the first N qubits.
Similar result hold also, if the observables on the qubit N
+1 are replaced by other Pauli matrices. Equation �74� can
directly be proved from Eq. �72� by identifying the corre-
sponding Pi and Qj.

Armed with these insights, we can formulate now en-
tropic criteria for stabilizer states.

Theorem 10: For GHZ and cluster states, respectively,
the following necessary conditions for biseparability can be
given using entropic uncertainties



k=1

N

H�Sk
�GHZN�� � ln�2� , �75�



k=1

N

H�Sk
�CN�� � ln�2� . �76�

Any state violating these conditions is genuine N-qubit en-
tangled. Note that for GHZ and cluster states the left-hand
side of Eq. �75� and Eq. �76�, respectively, is zero.

Proof: To prove Eq. �75� it suffices to look at pure bisepa-
rable states, since the entropy is concave in the state. So let
us assume that ���= �a��b� is a biseparable state. For definite-
ness, we assume that �a� is a state of the qubits 1 ,2 , . . . ,k and
�b� is a state of the qubits k+1,k+2, . . . ,N; the proof of the
other cases is similar. In order to apply the recipe from
above, we must show that on the first k qubits the EUR

H�X�1�
¯ X�k�� + 


i=2

k

H�Sk
�GHZN�� + H�Z�k�� � ln�2� �77�

holds. This is easy to see, since H�X�1�
¯X�k��+H�Z�k��

� ln�2� is valid, due to Eq. �74�. Similar ideas can be used
for cluster states. The proof is essentially the same as for the
GHZ state. Similar statements can also be derived for arbi-
trary graph states. �

As we have seen, it is quite straightforward to formulate
entropic criteria for stabilizer states. However, one should
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clearly state that the criteria in the presented form are not
very strong. For instance, the criterion in Eq. �75� detects
states mixed with white noise only for pnoise�0.123 for N
=3 and pnoise�0.083 for N=4. The robustness to noise can,
as shown for some two-qubit cases in Ref. �33�, be im-
proved, if other entropies than the Shannon entropy are used.
However, for these entropies no such general bound as in Eq.
�72� is known. So only a better understanding of the EURs
can help to explore the full power of the entropic criteria.

VI. CONCLUSIONS

In summary, we have shown that stabilizer theory can be
used very efficiently to derive sufficient criteria for entangle-
ment. Knowing some stabilizing operators of a state allows
for an easy derivation of a plethora of entanglement criteria
which detect states in the vicinity of the state. This holds for
linear as well as nonlinear criteria, and for the different types
of entanglement in the multipartite setting. We also noted
that the resulting criteria exhibit several interesting features:
They all are easy to implement in experiments, some of them
have interesting connections to Bell inequalities, others are
nonlinear improvements of witnesses.

A natural continuation of the present work lies in the sys-
tematic extension of the presented ideas to states which do
not fit directly in the stabilizer formalism. GHZ, cluster and
graph states are not the only multipartite states which are
interesting from the viewpoint of quantum information sci-
ence. As we have shown in the example of the W state, also
for states outside the stabilizer formalism similar ideas can
be applied by identifying their nonlocal stabilizing operators.
Exploring this direction might help to clarify the structure of
multipartite entanglement.
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APPENDIX A: THE STABILIZER GROUP

We summarize the properties of the stabilizing operators
of a given N-qubit quantum state ���. These are locally mea-

surable operators S̃ for which S̃���= ���. They have ±1 ei-
genvalues. For states considered in this paper �GHZ, cluster
and graph states� they are tensor products of Pauli spin ma-
trices.

Let us now list the properties of the set S containing the

stabilizing operators of �. For any S̃1, S̃2, S̃�S,

S̃1S̃2 � S ,

�S̃1, S̃2� = 0,

S̃2 = 1 . �A1�

Now it is clear that the elements of S form a commutative
�Abelian� group. It is called the stabilizer. One of its 2N ele-
ments is given as

S̃k ª �
l=1

N

�Sl�	kl, �A2�

where 	kl is the lth digit of the binary number �i.e., N-tuple
of 0,1�� corresponding to the number k� 0,1 ,2 , . . . ,2N

−1�. Operators Sl�l=1
N are the generators of the group. If

	kl=1 then we say that S̃k contains generator Sl in its defini-
tion of the type Eq. �A2�.

APPENDIX B: PROOF OF OPTIMALITY FOR THE GHZ
AND CLUSTER STATE WITNESSES

In this section we will prove that the GHZ and cluster
state witnesses defined in Eq. �23� and Eq. �41�, respectively,
are optimal. That is, it is not possible to find a stabilizer
witness W which needs only two measurement settings, has

the property that for some 	
0 we have W−	W̃�0, and
has better noise tolerance than the witnesses presented in this

paper. Here W̃ denotes a projector-based witness.
Before presenting the proof, let us analyze what we un-

derstand on measurement settings. Let us consider operators
which can be measured with one measurement setting. These
form a group, members of which commute locally �for an
explanation of local commuting see Sec. II B�. The projector
cannot be measured with two settings, since the stabilizing
operators cannot be divided into two locally commuting sub-
groups. So we will find two subgroups, which contain as
many stabilizing operators as possible. Let us consider GHZ
states first. The largest such subgroup is
	S2

�GHZN� ,S3
�GHZN� , . . . ,SN

�GHZN��. Here the group is given by the
generators. The operators in this group commute locally
since they all contain only Z�k�’s, and neither X�k�’s nor Y�k�’s.
All the other elements of the stabilizer have the form
S1

�GHZN�Q where Q� 	S2
�GHZN� ,S3

�GHZN� , . . . ,SN
�GHZN��. All these

operators contain only X�k�’s and Y�k�’s, and do not contain
Z�k�’s. None of these commute locally with any other element
of the stabilizer, except with the identity. Thus the other sub-
group can contain only one such operator and the identity.

Now the two subgroups corresponding to the two local
settings are

L1
�GHZN� = S1

�GHZN�Q,1� ,

L2
�GHZN� = 	S2

�GHZN�,S3
�GHZN�, . . . ,SN

�GHZN�� . �B1�

Any operator which is a linear combination of operators in
L1 can be measured by the first measurement setting. Simi-

ENTANGLEMENT DETECTION IN THE STABILIZER… PHYSICAL REVIEW A 72, 022340 �2005�

022340-11



larly, any operator which is linear combination of operators
in L2 can be measured by the second measurement setting. It
is an important question whether there is another choice for
L1 and L2. In order to answer this, we must remember that
we want to detect genuine N-qubit entanglement. Thus we
must find a witness for which 	W� has a unique minimum for
GHZ states. For that, we must be able to measure a complete
set of generators with the two settings. �For more details, see
Sec. II D.� It can be seen that no other two subgroups can be
found which fulfill this requirement. For simplicity, in the
following we choose Q=1. The two measurement settings
corresponding to this case are shown in Fig. 1�a�. Choosing
Q to be not the identity would not change our argument and
would not lead to witnesses with better noise tolerance than
the ones presented here.

As discussed before, the eigenvectors of the generators
Sk

�GHZN��k=1
N of the stabilizer form a complete basis �GHZ

basis�. We will use it to represent states of the N-qubit Hil-
bert space. Let us use N-tuples of 0, 1� for labeling the basis
states. If the kth digit is 0 �1� then for the basis state
	Sk

�GHZN��= +1�	Sk
�GHZN��=−1�. Now ��00¯0�� is the GHZ

state. Here square brackets are used in order to draw our
attention to the fact that the GHZ basis is not a product basis
and the N digits do not correspond to a physical partitioning
of the system.

Next, let us use this labeling to order the 2N basis states
from ��00¯�� to ��11¯1��. What is the matrix form of
S1

�GHZN� in this basis? It is clearly diagonal. Moreover, it must
give +1 and −1 expectation values for states of the form
��0s2s3¯sN�� and ��1s2s3¯sN��, respectively. Knowing this,
it must have the form diag�+1,−1� � 12N−1. Here diag denotes
a diagonal matrix and the size of the identity is indicated by
a subscript. Note again that the tensor product does not cor-
respond to a physical partitioning of the system. However,
the matrix form of S1

�GHZN� in the GHZ basis is the same as
the matrix form of Z�1� in the product basis. Similarly, the
matrix form of Sk

�GHZN� in the GHZ basis is the same as the
matrix form of Z�k� in the product basis.

After these considerations about measurement settings, let
us start our proof. Let us find out how operators measurable
by the first setting look like in the GHZ basis. Now it is clear
that such operators must have the form A � 1d2

where matrix
A is of size d1=2 and d2=2�N−1�. Operators measurable by
the second setting have the form 1d1

� B in this basis. Here B
is of size d2. We construct our witness from two operators
corresponding to the two measurement settings as

W ª c1d1
� 1d2

− A � 1d2
− 1d1

� B , �B2�

where c is a constant. Now we will find an operator W for

which for some 	
0 we have W−	W̃�GHZN��0 and which
is optimal from the point of view of noise tolerance. Without
the loss of generality, we set 	=2. Both W and the projector

witness W̃�GHZN� are diagonal in the GHZ basis. Hence from

the condition W�2W̃�GHZN�, the following constraints on the
diagonal elements ak and bk of A and B, respectively, can be
obtained

c − a1 − b1 � − 1,

c − ak − bl � + 1, k � 2;l � 1,

c − ak − bl � + 1, k � 1;l � 2. �B3�

The maximal noise plimit tolerated by our witness can be
computed as given in Eq. �15�. For this formula we must use

	GHZN�W�GHZN� = c − a1 − b1,

2−N Tr�W� = c −
1

d1


k=1

d1

ak −
1

d2


k=1

d2

bk. �B4�

In order to find the optimal witness, constant c and the ele-
ments of A and B must be chosen such that the noise toler-
ance plimit is maximized, under the constraints Eq. �B3�. This
is the case if all the three inequalities in Eq. �B3� are satu-
rated. Thus we obtain c=3, a1=b1=2, ak=bk=0 for k�2 and

plimit =
1

4 − 2/d1 − 2/d2
. �B5�

The witness obtained this way coincides with the witness
given in Eq. �23�.

Now let us turn to cluster states. We will need the follow-
ing lemma.

Lemma 1: Let us consider the following three subsets of
the stabilizer S�CN�:

P1 ª A � S�CN�: A contains Sl
�CN� �B6�

and does not contain Sl+1
�CN�,

P2 ª A � S�CN�: A contains Sl+1
�CN� �B7�

and does not contain Sl
�CN�,

P3 ª A � S�CN�: A contains both Sl+1
�CN� and Sl

�CN�� .

�B8�

If a local measurement setting makes it possible to measure
an operator in Pn, then it does not make it possible to mea-
sure any operator in Pm for m�n.

Proof: First let us prove our Lemma for l=1. In Table I�a�
we show for some elements of the stabilizer which measure-
ments on qubits �1� and �2� are needed to measure them.
Here for brevity superscript CN is omitted. A binary pattern
indicates whether a given element of the stabilizer contains
or does not contain generators S1, S2, and S3. For example,
entry 100 represents operators which contain S1 and do not
contain S2/3. Such operators are, for example, S1, S1S4 and
S1S4S6. In the second row of the table X, Y, and Z represent
Pauli spin matrices. 1 indicates that no measurement is
needed on the given qubit. For example, in the column of
101 entry X1 indicates that for measuring S1S3=X�1�X�3�Z�4�

an X measurement is needed for qubit �1� and no measure-
ments are needed for qubit �2�

The left two columns correspond to operators of set P1
which contain S1 and do not contain S2. The middle two
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columns correspond to operators of set P2 which contain S2
and do not contain S1. The right two columns correspond to
operators of set P3 which contain both S1 and S2. Based on
the table we see that only 100 and 101 have compatible
measurements for the first two qubits, XZ and X1, respec-
tively. An operator of Pn cannot be measured together with
any operator of Pm for m�n. Thus Lemma 1 works for l
=1.

Now let us prove, that if our Lemma is true for l=k−1,
then it is true for l=k. In Table I�b� the measurements for
qubits k and k+1 for a particular set of operators are shown.
An entry of the table, let us say 0100, represents all operators
which contain Sk, and does not contain Sk−1, Sk+1, and Sk+2.
Now the measurements for qubits k and k+1 for 0101 seem
to be compatible with the measurements for 1010, 1011,
1110, and 1111. However, we assumed that our Lemma is
true for l=k−1. Thus 0101 and 1010 cannot be measured
with the same setting. For the same reason, 0101 and 1011
cannot be measured with the same setting. Taking the other
operators having compatible measurements for qubits k and
k+1, we find that measuring them with the same setting is
prohibited by our lemma for l=k−1.

Lemma 1 limits the size of the subgroup of the stabilizer
of �CN� measurable by one measurement setting. Namely, for
even N the largest subgroup can be given with N /2 genera-
tors, while for odd N the maximum is �N+1� /2. Two sub-
groups of the stabilizer allowing for the measurement of a
complete set of generators are

L1
�CN�

ª 	S1
�CN�,S3

�CN�,S5
�CN�, . . . � ,

L2
�CN�

ª 	S2
�CN�,S4

�CN�,S6
�CN�, . . . � . �B9�

Now d1=d2=2N/2 for even N and d1/2=2�N±1�/2 for odd N.
There are other possibilities for the two measurement set-
tings, however, they do not give a better noise tolerance
since the optimal noise tolerance Eq. �B5� depends only on
d1 and d2, and does not depend on which elements of the
stabilizer are measured by the two settings. Optimization

leads to witness �41� constructed using two projectors, cor-
responding to the two settings. Thus witness given in Eq.
�41� is also optimal.

APPENDIX C: SOME TECHNICAL CALCULATIONS

Calculations for the W state—Here, we prove that Eq.
�62� describes an entanglement witness detecting states with
three-qubit entanglement around a W state. Note that this
witness was constructed independently from the stabilizer
theory. The proof is also useful in general, since it shows
how to find the minimum of an operator expectation value
for biseparable states analytically.

Let us first assume �1��23� biseparability. Then for a state
of the form �=�1 � �23,

	W�� = �1 + �5� − 	X�1��	X�2�� − 	X�1��	X�3�� − 	X�2�X�3��

− 	Y�1��	Y�2�� − 	Y�1��	Y�3�� − 	Y�2�Y�3��

= �1 + �5� − 	X�1��1�	X�2� + X�3��23�

+ 	Y�1��1�	Y�2� + Y�3��23� + �	X�2�X�3� + Y�2�Y�3��23�

= 	F�x,y��23, �C1�

where

x ª 	X�1��1, y ª 	Y�1��1. �C2�

Here 	¯�1 and �¯ �23, respectively, denote expectation value
computed for �1 and �23. To be explicit, matrix F, as the
function of two real parameters, is given

F�x,y� ª �1 + �5�1 − x�X�2� + X�3�� − y�Y�2� + Y�3��

− �X�2�X�3� + Y�2�Y�3�� . �C3�

Note that operator F acts on the second and third qubits
while its two parameters depend on the state of the first qu-
bit. The expectation value of F�x ,y� can be bounded from
below

	F�x,y��23 � �min�F�x,y�� = �5 − �1 + 4�x2 + y2� ,

�C4�

where �min�F� is the smallest eigenvalue of F. The right-
hand side of Eq. �C4� was obtained by finding the matrix
eigenvalues analytically. Using 	X�1��2+ 	Y�1��2�1, we obtain
that 	W�� is bounded from below by

	W�� � min
x2+y2�1

�min�F�x,y��� = 0. �C5�

Thus our witness has a non-negative expectation value for
biseparable pure states with partitioning �1��23�. Due to that
W� is symmetric under the permutation of qubits, 	W���0
holds also for pure biseparable states with a partitioning
�12��3� and �13��2�. It is easy to see that the bound is also
valid for mixed biseparable states. In contrast, for three-qubit
entangled states we have 	W����5−3. Among pure states,
the equality holds only for �W3� and �W3�= ��011�+ �101�
+ �110�� /�3, and their superpositions.

Calculations for the LURs described in Sec. IV—To com-

TABLE I. �a� Local measurements needed for measuring some
elements of the stabilizer on qubits �1� and �2� for a cluster state.
The binary pattern indicates presence or absence of generators S1,
S2 and S3. �b� Local measurements needed for qubits k and k+1
where k�2. The binary pattern indicates presence or absence of
generators Sk−1, Sk, Sk+1 and Sk+2. For details see text.

�a�
S1S2S3 100 101 010 011 110 111

O�1�O�2� XZ X1 ZX ZY YY YX

�b�
Sk−1SkSk+1Sk+2 0100 0101 1100 1101

O�k�O�k+1� XZ X1 YZ Y1

Sk−1SkSk+1Sk+2 0010 0011 1010 1011

O�k�O�k+1� ZX ZY 1X 1Y

Sk−1SkSk+1Sk+2 0110 0111 1110 1111

O�k�O�k+1� YY YX XY XX
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pute the bounds required for the derivation of the LURs we
show the following. Let Ai, for i=1,2 , . . . ,n be some observ-
ables, which anticommute pairwise �i.e., AiAj +AjAi=0 for all
i� j� and which have all ±1 eigenvalues �i.e., Ai

2=1 for all i�.
Then 
i=1

n �2�Ai��n−1. To show this, is suffices to show that

i=1

n 	Ai�2�1. This can be proved as follows: We take real
coefficients �1 , . . . ,�n with 
i=1

n �i
2=1. Then, using the fact

that the Ai anticommute, we have �
i=1
n �iAi�2=
i=1

n �i
2Ai

2

=
i=1
n �i

21=1. So, for all states �	
i=1
n �iAi��= �
i=1

n �i	Ai���1
holds. Since the �i are arbitrary, this implies that the vector
of the mean values �	A1� , 	A2� , . . . , 	An�� has a length smaller
than 1. Thus, 
i=1

n 	Ai�2�1 must hold. This method can be
used to derive all the bounds in Sec. IV.
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